Jökull


Jökull - 01.06.2000, Blaðsíða 25

Jökull - 01.06.2000, Blaðsíða 25
An ice-dammed lake in Jökulsárgil melt rate and the closure rate are however, close to each other at the lower end of the discharge range. The closure rate estimated above is based on the assumption that the strength of the ice tunnel is the same as for a circular or semi-circular tunnel with the same cross-sectional area fully enclosed in ice. It is proposed that the assumption concerning conduit cross-sectional geometry implicit in the modelling is ill-founded, and could result in an over-estimate of tunnel closure times. DISCUSSION OF TUNNEL CLOSURE DYNAMICS IN VIEW OF CONDITIONS AT S ÓLHEIMAJÖKULL Complications exist in the consideration of subglacial tunnel dynamics and problems are inherent in some of the modelling treatments of such conduits. Generally, straight conduits of either a semi-circular or circul- ar cross-sectional form are assumed for simplicity. However, Hooke et al. (1990) state a belief that is implied by other workers in glacial hydrology (e.g. Lliboutry, 1983; Iken and Bindschadler, 1986); that conduits at the glacier bed are broad and low in cross- sectional form. This shape is believed to develop through melting low on the conduit walls when water flow is low. As melting is only offsetting overburd- en closure on the lowest part of the conduit walls, the tunnel roof will continue to be forced down und- er overburden pressure. Hooke et al. (1990) also state that these conduits are most likely to form when the bed over which the water is flowing consists of soft sediments that can be transported in water. Usual assumptions made about the circular or semi-circular tunnel cross-sectional form do not seem to adequately represent the true nature of the subglacial conduit at Sólheimajökull. Observations made around both the northern and southern tunn- el outlets indicate that the ice slopes back into the portals and that the actual tunnel cross-section does not readily conform to any particular shape. The tunn- el portals tend towards a semi- circular cross-sectional form, but at the back of the portals ice can be obser- ved to be in contact with water almost at the level of the bed. Thus the water passes through the glacier in the form of a gravel-bedded river with ice very closely above it. The tunnel therefore does not possess a definable radius, but is more adequately described as having height and width characteristics (Figure 3). Thus the cross-sectional shape of the tunnel at Sól- heimajökull probably does not conform to that used in many models of ice conduit dynamics, and modelling using the traditional assumptions of a semi-circular or circular cross-sectional form could give rise to inaccurate predictions. Hooke et al. (1990) discuss a method of app- roximating the shape of subglacial conduits by the space between the chord of a circle and the arc su- btended by that chord (Figure 4). If the width of the tunnel remains constant, the factor that determines the height/width ratio of the conduit is the angle 9. When 9 = 180°, the height of the tunnel will be equal to W/2; this dimension would be referred to as the radius in unmodified models of tunnel dynamics. The tunnel height decreases as 9 decreases. Therefore to represent a very shallow tunnel with a broad cross- sectional shape, 9 would be very small. Hooke et al. (1990) state that, for an ice tunnel that is very broad and low in cross-sectional form, conduit closure rates could lie between limiting values derived by substitut- ing the conduit radius in Nye’s (1953) theory with the conduit height, followed by the half-width W/2. They use the mean of the two values (i.e. (H + W/2)/2) to predict subglacial conduit water pressures using Röt- hlisberger’s (1972) model. Whilst Hooke et al. (1990) suggest that H and W/2 are limiting values for the replacement of the tunnel radius (R) in Nye’s (1953) theory, they do not justify using a value that is the me- an of H and W/2 and it is not even clear that the radius W/2 is a true maximum for a very low tunnel. Nevert- heless it seems clear from the qualitative observati- ons of the tunnel geometry described above, that an effective radius that represents the “strength” of the ice roof over the tunnel could be much larger than the equivalent radius of a circular or semi-circular tunnel with the same cross-sectional area as the ice tunnel. Equation (1) indicates that a tunnel with a larger ef- fective radius would collapse at a more rapid rate th- an a circular or a semi-circular tunnel with the same cross-sectional area. Such an increase in the rate of JÖKULL No. 48 23
Blaðsíða 1
Blaðsíða 2
Blaðsíða 3
Blaðsíða 4
Blaðsíða 5
Blaðsíða 6
Blaðsíða 7
Blaðsíða 8
Blaðsíða 9
Blaðsíða 10
Blaðsíða 11
Blaðsíða 12
Blaðsíða 13
Blaðsíða 14
Blaðsíða 15
Blaðsíða 16
Blaðsíða 17
Blaðsíða 18
Blaðsíða 19
Blaðsíða 20
Blaðsíða 21
Blaðsíða 22
Blaðsíða 23
Blaðsíða 24
Blaðsíða 25
Blaðsíða 26
Blaðsíða 27
Blaðsíða 28
Blaðsíða 29
Blaðsíða 30
Blaðsíða 31
Blaðsíða 32
Blaðsíða 33
Blaðsíða 34
Blaðsíða 35
Blaðsíða 36
Blaðsíða 37
Blaðsíða 38
Blaðsíða 39
Blaðsíða 40
Blaðsíða 41
Blaðsíða 42
Blaðsíða 43
Blaðsíða 44
Blaðsíða 45
Blaðsíða 46
Blaðsíða 47
Blaðsíða 48
Blaðsíða 49
Blaðsíða 50
Blaðsíða 51
Blaðsíða 52
Blaðsíða 53
Blaðsíða 54
Blaðsíða 55
Blaðsíða 56
Blaðsíða 57
Blaðsíða 58
Blaðsíða 59
Blaðsíða 60
Blaðsíða 61
Blaðsíða 62
Blaðsíða 63
Blaðsíða 64
Blaðsíða 65
Blaðsíða 66
Blaðsíða 67
Blaðsíða 68
Blaðsíða 69
Blaðsíða 70
Blaðsíða 71
Blaðsíða 72
Blaðsíða 73
Blaðsíða 74
Blaðsíða 75
Blaðsíða 76
Blaðsíða 77
Blaðsíða 78
Blaðsíða 79
Blaðsíða 80
Blaðsíða 81
Blaðsíða 82
Blaðsíða 83
Blaðsíða 84
Blaðsíða 85
Blaðsíða 86
Blaðsíða 87
Blaðsíða 88
Blaðsíða 89
Blaðsíða 90
Blaðsíða 91
Blaðsíða 92

x

Jökull

Beinir tenglar

Ef þú vilt tengja á þennan titil, vinsamlegast notaðu þessa tengla:

Tengja á þennan titil: Jökull
https://timarit.is/publication/1155

Tengja á þetta tölublað:

Tengja á þessa síðu:

Tengja á þessa grein:

Vinsamlegast ekki tengja beint á myndir eða PDF skjöl á Tímarit.is þar sem slíkar slóðir geta breyst án fyrirvara. Notið slóðirnar hér fyrir ofan til að tengja á vefinn.