Jökull


Jökull - 01.06.2000, Síða 47

Jökull - 01.06.2000, Síða 47
Comparison of tomographic crustal models with gravity data or in error sources 4-6 listed above, which were not quantified for inclusion in the error budget, but which could account for several tenths of a mGal locally. An error in detrending the observed gravity field would produce a systematic effect and cannot explain the isolated misfits. The two areas of highest residual cor- respond to the topographic highs of Skarðsmýrarfjall and Hrómundartindur which rise to 600 m and 520 m respectively. An error in the Bouguer density of about 900 kg/m3 would be required to explain all of the residuals - an unrealistically high value. The most likely explanation for the misfits are variations in the velocity : density relationship. Scatter in the data used to derive Equation (1) shows that for a given seismic velocity, the density may vary by up to ±100 kg/m3 from that predicted. The Reyðar- fjörður drillhole is sited in Tertiary rocks, whereas the Hengill-Grensdalur and Krafla areas are in the neovolcanic zone, and the rock types are thus rather different. In addition, the velocity : density relations- hip is constrained by data only down to velocities of 3.8 km/s. Densities corresponding to velocities lower than this were determined by downward extrapolati- on and are probably associated with larger errors. Densities of 100 kg/m3 lower than those predicted in the material between sea level and 1 km depth could explain the zone of residual low gravity, as could densities 50 kg/m3 lower, extending down to 3 km depth. The zone of low gravity residual cor- responds to the zone of greatest recent volcanism and much of the present geothermal area, and relatively low densities in this zone are thus to be expected from high- porosity volcanic rocks and geothermally- altered material. Poor resolution in the LET model in the form of a systematic underestimate of the amplitude and extent of low-velocity volumes is also a possible explanation. LET may be poorer at imaging low- velocity volumes than high-velocity volumes because rays follow minimum time-paths which by-pass low- velocity material. Krafla Comparison of the LET model with the gravity field was poorer for the Krafla area, probably because the observed gravity field is dominated by anomalies that originate from density variations at very shallow depth where LET is insensitive. Small, shallow anom- alies such as these will not be detected by the LET, which will return a smoothed, average velocity field for volumes of low resolution. Other methods, e.g., shallow refraction profiling with closely-spac- ed seismic recorders, are more suited than LET to detecting small-scale, shallow anomalies. Furt- hermore, only the seismic structure inside the well- resolved volume was modelled, and thus unresolved, neighbouring bodies might contribute to the gravity field. It is interesting to note that the primary feature of both the gravity field and the LET model are high density/velocity anomalies beneath the caldera ring fault. The average elevation of the Krafla area is ~50() m above sea level, and thus the Bouguer slab is about 500 m thick. The Bouguer correction assumes this slab to have a uniform density. However, rock types are in reality highly diverse as a result of intensive volcanic activity and this may result in errors in the Bouguer anomaly of up to ~ 1 mGal. These errors will result in errors in the calculated density variations for the material below sea level. In circumstances such as these, gravity data are clearly a feeble test for LET models, but they can contribute to revealing structure where LET is insensitive, i.e. at shallow depth. Nevertheless, it is clear that there are substantial lateral variations in density in the Krafla area. The exact shapes and depth extents of the bodies ima- ged are not well resolved because localized averag- ing of velocity and smearing of spatial characteristics is a feature of the inversion process. Some compari- sons with the observed geology may be mentioned, however. The volume beneath the Leirhnjúkur area in the centre of the caldera contrasts with the caldera fill material that surrounds it in being of slightly higher seismic velocity and density. There is lso evidence from boreholes, located 2.5-3 km southeast of Leir- hnjúkur, that the basaltic intrusives that underlie the caldera fill may be elevated to a depth of 400-500 m b.s.l. within the caldera, compared with ~1000 m b.s.l. just south of the caldera (Ármannsson et al. 1987). This could explain the velocity/density high observed in the centre of the caldera. JÖKULL No. 48 45
Síða 1
Síða 2
Síða 3
Síða 4
Síða 5
Síða 6
Síða 7
Síða 8
Síða 9
Síða 10
Síða 11
Síða 12
Síða 13
Síða 14
Síða 15
Síða 16
Síða 17
Síða 18
Síða 19
Síða 20
Síða 21
Síða 22
Síða 23
Síða 24
Síða 25
Síða 26
Síða 27
Síða 28
Síða 29
Síða 30
Síða 31
Síða 32
Síða 33
Síða 34
Síða 35
Síða 36
Síða 37
Síða 38
Síða 39
Síða 40
Síða 41
Síða 42
Síða 43
Síða 44
Síða 45
Síða 46
Síða 47
Síða 48
Síða 49
Síða 50
Síða 51
Síða 52
Síða 53
Síða 54
Síða 55
Síða 56
Síða 57
Síða 58
Síða 59
Síða 60
Síða 61
Síða 62
Síða 63
Síða 64
Síða 65
Síða 66
Síða 67
Síða 68
Síða 69
Síða 70
Síða 71
Síða 72
Síða 73
Síða 74
Síða 75
Síða 76
Síða 77
Síða 78
Síða 79
Síða 80
Síða 81
Síða 82
Síða 83
Síða 84
Síða 85
Síða 86
Síða 87
Síða 88
Síða 89
Síða 90
Síða 91
Síða 92

x

Jökull

Beinleiðis leinki

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.