Jökull


Jökull - 01.07.2003, Blaðsíða 49

Jökull - 01.07.2003, Blaðsíða 49
Morphoclimates and morphodynamics of the northern Swedish Lapland and east Iceland fect, which, however, is considered to be rather small. Frost creep recorded on talus cones at higher altitudes of the Austfirðir Mountains requires seasonal freeze- thaw cycles with frozen ground of several months and frost penetration depths of more than 50 cm (Beylich 1999a). High rates of geomorphic activity in the Aust- firðir Mountains occur when air temperatures rise sig- nificantly above freezing point during winter (Figure 10). High maximum temperatures in autumn and win- ter cause high channel discharges due to intensive thaws. In the lowest parts of the study area, there is no complete snow cover over several months during autumn and winter. GEOMORPHOLOGICALLY RELEVANT ASPECTS OF THE PRECIPITATION REGIMES Latnjavagge Precipitation totals in this environment are mainly connected with cyclonic activity. At the Latnjajaure Field Station, the mean annual precipitation is 818 mm (1990–2001). The highest recorded annual sum value is 990 mm (1993), the lowest 605 mm (1996). The range between the highest and the lowest annual sum thus is 385 mm. The ratio between the highest and the lowest annual sum is approx. 1.6:1. Precipitation is quite irregularly distributed over the year, with October, recording 111 mm on average, being the month with the highest precipitation (Figure 11). The lowest precipitation is in May with an aver- age of 34 mm. The ratio between the mean for Octo- ber and that for May is 3.3:1. Most of the precipita- tion which occurs between October and May, and to- gether accounting for 66% of the mean annual precip- itation, is temporarily stored as snow. The thickness of the snow layer in Latnjavagge normally reaches its maximum in April. During the summer months June– August, August records the highest mean precipita- tion (82 mm). Altogether, precipitation from June to August accounts for 24% of the mean annual precipi- tation. The average number of precipitation days per month ranges from 23 in October to 16 in July. The magnitude-frequency analyses carried out with daily precipitation values above 5 mm for the months of May to October (Figure 12) provide infor- mation on frequencies and recurrence intervals of pre- cipitation events of certain magnitudes. Field research in Latnjavagge showed that even daily amounts of 31.2 mm (rainfall event on August 8 , 2000) and 31.5 mm (rainfall event on July 12 , 2002) do not trigger debris flows or slides on the slope systems. Due to the stability of the slope systems and the almost com- plete and very stable vegetation cover, there is also no significant increase of suspended sediment concen- trations (suspended sediment concentrations are nor- mally 0–4 mg L ) in the creeks and channels of the catchment area. Daily precipitation of 31 mm, caus- ing saturation overland flow on the slopes and high channel discharges are most frequent in August and have a 4-year recurrence interval in this month. In July such rainfall events can be expected every 16 years. It should be noted that the rainfall events of August 8 , 2000 and July 12  2002 had durations of several hours. The rainfall intensities during these events were not extremely high. It is known that short summer rainstorms with very high rainfall intensities can cause debris flows and slides on the slope systems and increased suspended sediment concentrations and bedload transportation in the channels in a number of other valleys in the Abisko mountain area (Jonasson and Nyberg 1999). In the more stable Latnjavagge drainage basin, higher concentrations of suspended sediments (up to 50 mg L ) were only observed dur- ing intense snow melt and were mainly caused by the ice patches in the valley, mobile channel debris beds exposing fines and material mobilized by slush flows. The channel beds are characterized by stable step- pool systems developed in debris. These fluvial step- pool systems have been stable over the entire inves- tigation period and only movements of single stones over smaller distances (<15 m) occurred. Longer periods without precipitation are highly probable in June and above all in July. Longer dry spells during the snow melt period have the effect that the runoffs are to a large extent thermally de- termined. Summer dry spells after snow melt lead to low runoffs, with smaller creeks drying up com- pletely. The drying up of vegetation-free regolith can lead to increased deflation. JÖKULL No. 52, 2003 47
Blaðsíða 1
Blaðsíða 2
Blaðsíða 3
Blaðsíða 4
Blaðsíða 5
Blaðsíða 6
Blaðsíða 7
Blaðsíða 8
Blaðsíða 9
Blaðsíða 10
Blaðsíða 11
Blaðsíða 12
Blaðsíða 13
Blaðsíða 14
Blaðsíða 15
Blaðsíða 16
Blaðsíða 17
Blaðsíða 18
Blaðsíða 19
Blaðsíða 20
Blaðsíða 21
Blaðsíða 22
Blaðsíða 23
Blaðsíða 24
Blaðsíða 25
Blaðsíða 26
Blaðsíða 27
Blaðsíða 28
Blaðsíða 29
Blaðsíða 30
Blaðsíða 31
Blaðsíða 32
Blaðsíða 33
Blaðsíða 34
Blaðsíða 35
Blaðsíða 36
Blaðsíða 37
Blaðsíða 38
Blaðsíða 39
Blaðsíða 40
Blaðsíða 41
Blaðsíða 42
Blaðsíða 43
Blaðsíða 44
Blaðsíða 45
Blaðsíða 46
Blaðsíða 47
Blaðsíða 48
Blaðsíða 49
Blaðsíða 50
Blaðsíða 51
Blaðsíða 52
Blaðsíða 53
Blaðsíða 54
Blaðsíða 55
Blaðsíða 56
Blaðsíða 57
Blaðsíða 58
Blaðsíða 59
Blaðsíða 60
Blaðsíða 61
Blaðsíða 62
Blaðsíða 63
Blaðsíða 64
Blaðsíða 65
Blaðsíða 66
Blaðsíða 67
Blaðsíða 68
Blaðsíða 69
Blaðsíða 70
Blaðsíða 71
Blaðsíða 72
Blaðsíða 73
Blaðsíða 74
Blaðsíða 75
Blaðsíða 76
Blaðsíða 77
Blaðsíða 78
Blaðsíða 79
Blaðsíða 80
Blaðsíða 81
Blaðsíða 82
Blaðsíða 83
Blaðsíða 84
Blaðsíða 85
Blaðsíða 86
Blaðsíða 87
Blaðsíða 88
Blaðsíða 89
Blaðsíða 90
Blaðsíða 91
Blaðsíða 92

x

Jökull

Beinir tenglar

Ef þú vilt tengja á þennan titil, vinsamlegast notaðu þessa tengla:

Tengja á þennan titil: Jökull
https://timarit.is/publication/1155

Tengja á þetta tölublað:

Tengja á þessa síðu:

Tengja á þessa grein:

Vinsamlegast ekki tengja beint á myndir eða PDF skjöl á Tímarit.is þar sem slíkar slóðir geta breyst án fyrirvara. Notið slóðirnar hér fyrir ofan til að tengja á vefinn.