Jökull


Jökull - 01.12.2007, Síða 40

Jökull - 01.12.2007, Síða 40
McPeek et al. position of nutrients, particularly phosphorus (P), and of tephra could have significant impact on soil forma- tion (Arnalds, 2004; Gislason et al., 1996), a concur- rent examination of changes in mineral nutrients and carbon (C) will improve our understanding of the ef- fects of biotic and abiotic factors on soil formation. Humid climate and uniform parent materials therefore make Iceland an ideal location for studying how we- athering affects soil development and the rate of chan- ges in soil nutrients, e.g., nitrogen (N) and P, in young volcanic soils. A terrestrial ecosystem depends on the availabi- lity of numerous elements, including C and P, to func- tion properly. Carbon dioxide (CO2) enters the bio- sphere from the atmosphere mostly via photosynthe- sis of green plants. Carbon in plants can cycle thro- ugh other pathways (e.g., plant respiration) and return to the atmosphere. Carbon in plants can also become part of soil organic C pool. Carbon content in young soils tends to increase as the soil develops. Thus, C content in the soil is indicative of how plant activity and other aspects of an ecosystem have changed over a period of time. Phosphorus, on the other hand, has no natural ga- seous phase. The main source of P in terrestrial envi- ronments is rocks and P is released into the ecosys- tem by chemical weathering of these rocks, although deposition of airborne P can also contribute to soil P pool to some extent (Chadwick et al., 1999; Gislason et al., 1996). The most significant source for P in soils is apatite minerals. These minerals can be congruently weathered as a result of reaction with dissolved CO2 in water: Ca5(PO4)3OH+ 4CO2 + 3H2O! 5Ca2+ + 3HPO2!4 + 4HCO 1! 3 In soils, P is released from mineral grains by se- veral processes. First, the reduced pH produced from respiration-related CO2 in the vicinity of both de- composing organic matter and root hairs dissolves P- bearing minerals (mainly apatites) and releases P to root pore spaces. Second, organic acids released by plant roots can also dissolve apatite minerals and re- lease P to soil pore spaces (Jurinak et al., 1986). Pho- sphorus is immobile in most soils, and its slow rate of diffusion from dissolved form in pore spaces strongly limits its supply to root surfaces. Furthermore, much of the available P in soils is in complex organicmatter, which is not directly accessible for plant or microbial uptake. As a consequence, plants and microbes have developed two specific tactics to increase the supply of P to roots. One is through phosphatase, an enzyme often excreted by plants and soil microbes. Phospha- tase can catalyze the release of bio-available inorganic P from organic matter. Another is through a symbio- tic mutualism between plants and mycorrhizae, which not only increase the absorption surface of plant ro- ots, but also excrete phosphatase and organic acids to release P and provide an active uptake site for P that is diffused from soil pore spaces to root surfaces (e.g., Schlesinger, 1997). The distribution among different forms of soil P changes greatly with time and soil development. The forms of soil P can be grouped into refractory (not re- adily bio-available) and labile (readily bio-available). The refractory forms include P in apatite minerals and P co-precipitated with and/or adsorbed onto iron and manganese oxyhydroxides (termed “occluded” P). The reducible oxyhydroxides have large binding capacities for phosphate, due to their immense surface area and numerous delocalized positively charged si- tes (e.g., Froelich, 1988). The labile forms include P in soil pore spaces (as dissolved phosphate ion) and adsorbed onto soil particle surfaces (these forms are termed “nonoccluded” P), as well as P incorporated in soil organic matter. On a newly-exposed lithic sur- face, nearly all of the P is present as P in apatite. With time and soil development, however, P is increasingly released from this form and incorporated in the others (Crews et al., 1995; Filippelli, 2002; Filippelli and Souch, 1999; Filippelli et al., 2006; Walker and Sy- ers, 1976). Over time, the total amount of P available in the soil profile decreases, as soil P is lost through surface and subsurface runoff. Eventually, the soil re- aches a terminal steady state, when soil P is heavily recycled and any P lost through runoff is slowly re- placed by new P weathered from apatite minerals at the base of the soil column. 38 JÖKULL No. 57
Síða 1
Síða 2
Síða 3
Síða 4
Síða 5
Síða 6
Síða 7
Síða 8
Síða 9
Síða 10
Síða 11
Síða 12
Síða 13
Síða 14
Síða 15
Síða 16
Síða 17
Síða 18
Síða 19
Síða 20
Síða 21
Síða 22
Síða 23
Síða 24
Síða 25
Síða 26
Síða 27
Síða 28
Síða 29
Síða 30
Síða 31
Síða 32
Síða 33
Síða 34
Síða 35
Síða 36
Síða 37
Síða 38
Síða 39
Síða 40
Síða 41
Síða 42
Síða 43
Síða 44
Síða 45
Síða 46
Síða 47
Síða 48
Síða 49
Síða 50
Síða 51
Síða 52
Síða 53
Síða 54
Síða 55
Síða 56
Síða 57
Síða 58
Síða 59
Síða 60
Síða 61
Síða 62
Síða 63
Síða 64
Síða 65
Síða 66
Síða 67
Síða 68
Síða 69
Síða 70
Síða 71
Síða 72
Síða 73
Síða 74
Síða 75
Síða 76
Síða 77
Síða 78
Síða 79
Síða 80
Síða 81
Síða 82
Síða 83
Síða 84
Síða 85
Síða 86
Síða 87
Síða 88
Síða 89
Síða 90
Síða 91
Síða 92
Síða 93
Síða 94
Síða 95
Síða 96
Síða 97
Síða 98
Síða 99
Síða 100
Síða 101
Síða 102
Síða 103
Síða 104
Síða 105
Síða 106
Síða 107
Síða 108
Síða 109
Síða 110
Síða 111
Síða 112
Síða 113
Síða 114
Síða 115
Síða 116
Síða 117
Síða 118
Síða 119
Síða 120
Síða 121
Síða 122
Síða 123
Síða 124

x

Jökull

Beinleiðis leinki

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.