Jökull


Jökull - 01.12.1976, Side 24

Jökull - 01.12.1976, Side 24
Fig. 2. Maximum entropy power spectrum o£ the record in Fig. 1. Prediction error filter length =10 and D.C. component removed. Mynd 2. Aflróf hámarksentropi límiritsins í Mynd 1. THE BOREHOLE-CAVITY RESONATOR The simple model to be investigated here and sketched in Fig. 3 consists of a homogene- ous and isotropic linearly (Hookean) elastic half-space with a cavity at depth which is con- SURFACET Fig. 3. Borehole-cavity resonator with a flat circular cavity. Mynd 3. Sveiflukerfi borholu, sem tengd er flötu hringlaga holrými. 22 JÖKULL26. ÁR nected with the free surface by a vertical pipe or borehole. For the present purpose we will assume that the cavity is a flat horizontal cir- cular fracture of radius R and having a very small width b. The system contains a fluid such that the cavity is filled and there is a fluid column of height h in the borehole. The cross section of the borehole is a. In order to avoid mathematical complexities of little relevance for the main physical pheno- mena of interest, we will make the following simplifying assumptions: (1) The depth of the borehole is substantial- ly greater than the radius R such that we can assume that the cavity is embedded in an in- finite elastic space. The assumption of a hori- zontal cavity is then theoretically strictly not necessary. Our final results will hold for any other position provided the cavity is connected with the borehole. (2) On the other hand, the dimensions h and R are limited and b so small (b« R/100) that the compressibility of the fluid can be neglect- ed. Hence, during oscillations, the differential fluid pressure p is assumed to be constant throughout the cavity and equal to the differ- ential pressure due to the fluid column in the borehole. Fig. 4. Coordinate system placed in the walls of the cavity. Mynd 4. Hnitakerfi sett i vegg holrýmis. (3) Let the volume of the cavity be V. In order to obtain the volume elastance e = dV/dp we place as shown in Fig. 4 a cylindrical co- ordinate system with the radial coordinate r in each wall of the cavity such that the z-axis is vertical into the solid. We assume that because of the flatness of the cavity, the elastic displace- rnent vector in the adjacent rock is of the form u = (0,0,w(P,t)) where P = (r,z). In other words, the displacement in both walls of the cavity has only a vertical component w(P,t). More- over, we assume symmetry about the center plane and that
Side 1
Side 2
Side 3
Side 4
Side 5
Side 6
Side 7
Side 8
Side 9
Side 10
Side 11
Side 12
Side 13
Side 14
Side 15
Side 16
Side 17
Side 18
Side 19
Side 20
Side 21
Side 22
Side 23
Side 24
Side 25
Side 26
Side 27
Side 28
Side 29
Side 30
Side 31
Side 32
Side 33
Side 34
Side 35
Side 36
Side 37
Side 38
Side 39
Side 40
Side 41
Side 42
Side 43
Side 44
Side 45
Side 46
Side 47
Side 48
Side 49
Side 50
Side 51
Side 52
Side 53
Side 54
Side 55
Side 56
Side 57
Side 58
Side 59
Side 60
Side 61
Side 62
Side 63
Side 64
Side 65
Side 66
Side 67
Side 68
Side 69
Side 70
Side 71
Side 72
Side 73
Side 74
Side 75
Side 76
Side 77
Side 78
Side 79
Side 80
Side 81
Side 82
Side 83
Side 84
Side 85
Side 86
Side 87
Side 88
Side 89
Side 90
Side 91
Side 92
Side 93
Side 94
Side 95
Side 96
Side 97
Side 98
Side 99
Side 100
Side 101
Side 102
Side 103
Side 104

x

Jökull

Direkte link

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.