Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1977, Qupperneq 81

Jökull - 01.12.1977, Qupperneq 81
An Equation for Gravity Waves on Deep Water GUNNAR BODVARSSON SCHOOL OF OCEANOGRAPHY AND DEPARTMENT OF MATHEMATICS OREGON STATE UNIVERSITY, CORVALLIS, OREGON 97331 abstract A single scalar equation for the amplitude of gravity waves on deep water can in the lineariz- ed infinitesimal amplitude approximation be derived on the basis of elementary potential theory. The spatial part of the wave operalor involved acts as the square root of the two- dimensional Laplacian operating on the domain defined by the static free surface. The charac- teristics of gravity waves such as dispersion re- sult from the special properties of this operator. INTRODUCTION The theory of gravity waves on deep water has interested mathematicians and physicists for centuries. The subject has a long and impres- sive history which can be traced back to Cauchy and Poisson at the beginning of the nineteenth century. Research in this field is still very active, and a number of excellent books have appeared (Stoker, 1957; Kinsman, 1965; Phillips, 1966) describing both the classical theory and notable recent results. It is of sorne interest to note that in spite of the very rich and well developed tlieory, no single equation which can be referred to as the equation of gravity waves of infinitesimal ampli- tude, appears to liave been set forth in the literature. Well defined wave equations, on the other hand, provide the basis for the theory of other oscillatory scalar fields such as in tlie theory of sound where d’Alembert’s equation plays a central role. Although it is quite obvious that the theory of gravity waves has been progressing very well without the benefit of a basic wave equation, there is little doubt that the availability of such an equation would help to both simplify and clarify some aspects of the theory. Tlie present short note intends to demonstrate that a gravity wave equation can be obtained by elementary means witiiin the framework of classical line- arized theory, viz., involving waves of an in- finitesimal amplitude on the surface of a deep layer of an ideal fluid. We will commence by introducing our principal mathematical tool, the surface operator which generates the deriva- tive of a harmonic function across a given sur- face on the basis of the values of tlie function on the surface. THE SURFACE OPERATOR Consider a rectangular coordinate system and a simply connected 2-dimensional domain 2 with a piecewise smooth boundary y embedded in the plane z = 0. Let B be the 3-dimensionaI cylindrical product domain of 2 antl the inter- val (0,d) on the z-axis. Moreover, let 2 + T denote the boundary of B where F consists of the side surface of B and the end face in the z = d plane. The general field point in B is P = (x,y,z). Let cf, (P) be a function which is harmonic in B, that is, -V20 = 0, P in B, (1) and which satisfies the Neumann type boundary condition on T, d(þ/dn = 0, P on T, (2) where n is the outward normal to F- Since cþ (l’) is harmonic in B and satisfies a prescribed condi- tion on r, its values in B are uniquely deter- mined by the boundary values cþ0 (S) on 2 where S = (x,y) is a field point on 2- The JÖKULL 27. ÁR 79
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.