Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1977, Qupperneq 82

Jökull - 01.12.1977, Qupperneq 82
function can be represented (Duff and Naytor, 1966) by an integral over 2 <þ(Y>)= Jg (P, R) «/>0 (R) daK, P in B, (3) s where G (P, R) is the appropriate Robin func- tion, R = (x', y') and daK = dx'dy'. Evidently lim G (P,R) = 8 (S—R), (4) zl 0 where 8 (S—R) is the 2-dimensional delta func- tion of S centered at R. Moreover, the various derivatives of </> (P) can also be represented by integral expressions derived from (3). We are particularly interested in the negative derivative with respect to z taken at 2> that is, at z = 0. This quantity is con- veniently expressed ~\4> = h<k, z i 0 (5) where H is he integral-differential operator h = -a. z 4 0 / G (P,R), P in B, (6) important case is obtained when d -» °°. We can then construct the following eigenfunction representation of H. Let Uj (S) be the eigenfunctions and the eigenvalues of on 2 with the Neumann type boundary condition (2) on y, viz., -V"Uj = \jUj, j = 1,2.......... S in 2 (10) and 3Uj/3n = 0, S on y. (11) Considering now tlie case where d it is a simle matter to show that any solution of (1) which satisfies (2) can be represented by the following eigenfunction expansion, <f> (P) = 2ajUj (S) exp (-V*z), (12) where the aJs are expansion coefficients. The Laplacian on 2 with the condition (11) has the representation -V^JsXjUjíSJUj'ÍR). (13) A little algebra based on (6) and (12) reveals that and the integration is with espect to R. This is a cross surface differential operator which generates the derivative of the harmonic func- tion (f> (P) across the surface 2 111 terms of the values of (f> (P) on 2- The principal characteristics of H are imme- diately revealed by the observation that apply- ing H twice to </>0 (S) we obtain because of (1) and the smoothness of </> (P) H2</>o = \*<t> (P) z j, 0 = -V;4>o' (?) where V2 = 3 4- 3 v 2 — zz — yy and consequently H = (—V22)^ (8) (9) that is, the operator H acts as a square root of the 2-dimensional Laplacian. The property (9) does not determine H uni- quely. There is also a dependence on d. The simplest, and in the present context the most H = lim f^Xj^Uj (S) Uj* (R) exp (—Xj^z), (14) z l 0 V and has an inverse K = H-i = lim f 2Aj-iuj (S) Uj* (R) exp (-k^z), (15) ziOV These results hokl for P in B, for d -» œ only, and the integration in (13) to (15) is again witli respect to R. Anologous results for finite deptlis d are easily derived but some of the above simplicity is lost. A reflection factor has to be included in (14) and (15). THE GRAVITY WAVE EQUATION Let F be a layer of a homogeneous, incom- pressible, inviscid non-rotating fluid of density p contained in a basin equivalent to the domain B defined above. The side walls of B are vertical and the z-axis vertically down. Let the static 80 JÖKULL Q7. ÁR
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.