Jökull


Jökull - 01.12.2007, Side 84

Jökull - 01.12.2007, Side 84
Thorsteinsson et al. d = mean diameter of borehole drilled in time t !z = depth increment drilled in time t !T = T0 – T U = heat transfer coefficient of hose (unit: Js"1m"2K"1) = k/b k = coefficient of thermal conductivity of hose mate- rial (unit: Js"1m"1K"1) A = total surface area of hose = 2"rhosez = "dhosez, with dhose= hose diameter and z = depth b = hose wall thickness For ice melting at the bottom of the borehole we obtain from energy balance: micelice t = mwcpw(T"Tf) t (1) Referring to Figure 6 the mass of ice in a depth in- crement !z of the borehole is mice = !iceVhole = !iceShole!z = !ice"(d2/4)!z and insertion in (1) then yields !icelice"(d 2 4 )!z t = mwcpw(T"Tf) t (2) which after rearrangement yields d2 = ( 4")( mw t )( cpw !icelice )(T"Tfv ) (3) where v = !z/t is the drilling rate; i.e. the down- ward velocity of the drill tip. Inserting numbers for cpw, !ice, lice and Tf and the known value of mw/t = 450 l/hr = 0.125 kg/s, we obtain the relation d = 0.015[m3/2s"1/2K"1/2] # ! T v (4) for the diameter of the borehole (in m), expressed as a function of the drilling velocity (set by the operator) and the temperature of the water emerging from the drilling tip. Following Taylor (1984), we may express the heat loss through the hose per unit time (from surface to drill stem) as mwcpw!T t = UA!Tm (5) where !Tm = T0"T ln(T0)"ln(T ) (6) is the logarithmic mean of T and T0. Here we have neglected a small variation of T f with depth down the borehole. Insertion in (5) then yields mcpw!T t = k b "dhosez!T ln(T0/T ) (7) where we have used U = k/b and A = "dhosez. Rear- ranging, we obtain the expression ln(T0/T ) = Ckz (8) where C = ! dhoseb m t cpw (9) and thus the temperature T at the drill tip becomes T = T0e"CkZ (10) Inserting numbers in (9) we obtain C = 0.021 KsJ"1. The coefficient of thermal conductivity of the hose, made of synthetic rubber, is not known, so we have tentatively assumed the value for rubber given in the CRC Handbook of Chemistry and Physics: k = 0.16 Js"1m"1K"1. Equation (10) is used to calculate the curve in Figure 4 and insertion of (10) in (4) then yields the following relation for the borehole diameter as a function of depth and drilling rate d = 0.015[m3/2s"1/2K"1/2] # ! T0 v e " 12 CkZ (11) which is used to calculate the curves in Figure 5. 82 JÖKULL No. 57
Side 1
Side 2
Side 3
Side 4
Side 5
Side 6
Side 7
Side 8
Side 9
Side 10
Side 11
Side 12
Side 13
Side 14
Side 15
Side 16
Side 17
Side 18
Side 19
Side 20
Side 21
Side 22
Side 23
Side 24
Side 25
Side 26
Side 27
Side 28
Side 29
Side 30
Side 31
Side 32
Side 33
Side 34
Side 35
Side 36
Side 37
Side 38
Side 39
Side 40
Side 41
Side 42
Side 43
Side 44
Side 45
Side 46
Side 47
Side 48
Side 49
Side 50
Side 51
Side 52
Side 53
Side 54
Side 55
Side 56
Side 57
Side 58
Side 59
Side 60
Side 61
Side 62
Side 63
Side 64
Side 65
Side 66
Side 67
Side 68
Side 69
Side 70
Side 71
Side 72
Side 73
Side 74
Side 75
Side 76
Side 77
Side 78
Side 79
Side 80
Side 81
Side 82
Side 83
Side 84
Side 85
Side 86
Side 87
Side 88
Side 89
Side 90
Side 91
Side 92
Side 93
Side 94
Side 95
Side 96
Side 97
Side 98
Side 99
Side 100
Side 101
Side 102
Side 103
Side 104
Side 105
Side 106
Side 107
Side 108
Side 109
Side 110
Side 111
Side 112
Side 113
Side 114
Side 115
Side 116
Side 117
Side 118
Side 119
Side 120
Side 121
Side 122
Side 123
Side 124

x

Jökull

Direkte link

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.