Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.2007, Qupperneq 84

Jökull - 01.12.2007, Qupperneq 84
Thorsteinsson et al. d = mean diameter of borehole drilled in time t !z = depth increment drilled in time t !T = T0 – T U = heat transfer coefficient of hose (unit: Js"1m"2K"1) = k/b k = coefficient of thermal conductivity of hose mate- rial (unit: Js"1m"1K"1) A = total surface area of hose = 2"rhosez = "dhosez, with dhose= hose diameter and z = depth b = hose wall thickness For ice melting at the bottom of the borehole we obtain from energy balance: micelice t = mwcpw(T"Tf) t (1) Referring to Figure 6 the mass of ice in a depth in- crement !z of the borehole is mice = !iceVhole = !iceShole!z = !ice"(d2/4)!z and insertion in (1) then yields !icelice"(d 2 4 )!z t = mwcpw(T"Tf) t (2) which after rearrangement yields d2 = ( 4")( mw t )( cpw !icelice )(T"Tfv ) (3) where v = !z/t is the drilling rate; i.e. the down- ward velocity of the drill tip. Inserting numbers for cpw, !ice, lice and Tf and the known value of mw/t = 450 l/hr = 0.125 kg/s, we obtain the relation d = 0.015[m3/2s"1/2K"1/2] # ! T v (4) for the diameter of the borehole (in m), expressed as a function of the drilling velocity (set by the operator) and the temperature of the water emerging from the drilling tip. Following Taylor (1984), we may express the heat loss through the hose per unit time (from surface to drill stem) as mwcpw!T t = UA!Tm (5) where !Tm = T0"T ln(T0)"ln(T ) (6) is the logarithmic mean of T and T0. Here we have neglected a small variation of T f with depth down the borehole. Insertion in (5) then yields mcpw!T t = k b "dhosez!T ln(T0/T ) (7) where we have used U = k/b and A = "dhosez. Rear- ranging, we obtain the expression ln(T0/T ) = Ckz (8) where C = ! dhoseb m t cpw (9) and thus the temperature T at the drill tip becomes T = T0e"CkZ (10) Inserting numbers in (9) we obtain C = 0.021 KsJ"1. The coefficient of thermal conductivity of the hose, made of synthetic rubber, is not known, so we have tentatively assumed the value for rubber given in the CRC Handbook of Chemistry and Physics: k = 0.16 Js"1m"1K"1. Equation (10) is used to calculate the curve in Figure 4 and insertion of (10) in (4) then yields the following relation for the borehole diameter as a function of depth and drilling rate d = 0.015[m3/2s"1/2K"1/2] # ! T0 v e " 12 CkZ (11) which is used to calculate the curves in Figure 5. 82 JÖKULL No. 57
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.