Jökull


Jökull - 01.01.2015, Síða 4

Jökull - 01.01.2015, Síða 4
Einarsson and Hjartardóttir systems increases with distance from the EVZ-SISZ junction (Óskarsson et al., 1982). Furthermore, FeTi volcanism, characteristic for propagating rifts (e.g. Sinton et al., 1983), is found within this area, be- ginning 2–3 Myr ago (Jóhannesson et al., 1990). It can thus be argued that the area between Torfajökull and the south coast in Mýrdalur district (see Figure 2) has been created during the last 3 million years by voluminous FeTi basalt placed unconformably on top of older sea floor. This is supported by xenoliths found in the hyaloclastites in Mýrdalur, on the S-flank of Katla (Áskelsson, 1960; Einarsson, 1962, 1967). These xenoliths are fragments of oceanic sediments containing fossils. In spite of this copious volcan- ism no measurable crustal spreading has begun yet, as shown by GPS-geodesy in the last decade (LaFem- ina et al., 2005; Geirsson et al., 2006; Árnadóttir et al., 2009). Hence, Eyjafjallajökull is situated on sta- ble Eurasia Plate and can be classified as an intraplate volcano. Same applies to its nearest neighbour, Katla, in spite of its occasional connection with rifting in the EVZ, exemplified by the AD 934 Eldgjá eruption (e.g. Larsen, 2000; Thordarson et al., 2001), (Figure 2). The transition from the divergent EVZ to the South Iceland flank zone is also clearly seen in the structural architecture. Long, parallel extensional structures such as normal faults and eruptive fissures characterize the EVZ (Thórarinsson et al., 1973; Ein- arsson, 2008). South of the EVZ-SISZ junction these structures become short and their strike variable. The southern fissure swarm of Torfajökull has a trend of ENE, and the Hekla volcanic system similarly. The Tindfjallajökull and Eyjafjallajökull volcanic systems trend almost E-W (Figures 2 and 3). STRUCTURE OF THE VOLCANIC SYSTEM The Eyjafjallajökull volcano is relatively old. The oldest formations are found at the lowest stratigraphic level on the south flank, near Þorvaldseyri farm (Fig- ure 3). Reversely magnetised layers are found there indicating an age older than the Matuyama-Brunhes magnetic boundary (0.78 My), confirmed by K-Ar dating (Kristjánsson et al., 1988). The bulk of the volcano was, however, built up during the Brunhes magnetic chron as shown by a large positive mag- netic anomaly associated with the edifice (Jónsson et al., 1991). The anomaly can be traced towards the south and west, towards the Vestmannaeyjar vol- canic system off shore. The construction of the ed- ifice therefore occurred in the presence of water and ice. Erosional scars, mainly in the southern flank area of the volcano, show assemblages characteristic for subglacial deposition and indicate that a good part of the volcanic edifice was emplaced during deglaciation (Loughlin, 2002). Geothermal activity at Eyjafjallajökull is only lim- ited. The only significant occurrence is near the Selja- vellir farm on the south flank, where the oldest rocks are exposed and the level of erosion is deepest. Jóns- son (1998) reports a volume of highly altered rocks in this area, cut by numerous dikes and veins, indicating long-lasting geothermal activity. Loughlin (1995) mapped 118 dikes on the south side of Eyjafjallajökull. The area with the highest density of eroded dikes is in the valleys and gorges above Seljavellir and Þorvaldseyri farms (Figure 3). The vast majority of the observed dikes are 0.1–0.7 m wide. They dip steeply and about 50% of them have a dip of 90◦. The distribution of dike strike is bimodal with the bulk of the observations in a bell-shaped dis- tribution with the center azimuth of 45◦, and the sec- ond peak (small and narrow) at 180◦. Jakobsson (1979) analysed 20 lava units at Eyja- fjallajökull that he identified as being of Postglacial age. Only two of them turned out to be of basaltic composition, both located in the eastern fissure swarm, at Fimmvörðuháls. Of the rest, 17 were of intermediate composition and one quartz-trachytic. Here it should be noted that the term Postglacial may have a variable meaning because of the glacial cover of the volcano and high elevation of most of the erup- tion sites. The glacier attained its maximum areal cov- erage around 1900 AD and has been shrinking ever since at a high rate. Lavas erupted in the Holocene may therefore be glacially eroded and show evidence of close interaction with snow, ice and water. Even the lava of March 2010 on the eastern flank at Fimm- vörðuháls was influenced by such interaction. 4 JÖKULL No. 65, 2015
Síða 1
Síða 2
Síða 3
Síða 4
Síða 5
Síða 6
Síða 7
Síða 8
Síða 9
Síða 10
Síða 11
Síða 12
Síða 13
Síða 14
Síða 15
Síða 16
Síða 17
Síða 18
Síða 19
Síða 20
Síða 21
Síða 22
Síða 23
Síða 24
Síða 25
Síða 26
Síða 27
Síða 28
Síða 29
Síða 30
Síða 31
Síða 32
Síða 33
Síða 34
Síða 35
Síða 36
Síða 37
Síða 38
Síða 39
Síða 40
Síða 41
Síða 42
Síða 43
Síða 44
Síða 45
Síða 46
Síða 47
Síða 48
Síða 49
Síða 50
Síða 51
Síða 52
Síða 53
Síða 54
Síða 55
Síða 56
Síða 57
Síða 58
Síða 59
Síða 60
Síða 61
Síða 62
Síða 63
Síða 64
Síða 65
Síða 66
Síða 67
Síða 68
Síða 69
Síða 70
Síða 71
Síða 72
Síða 73
Síða 74
Síða 75
Síða 76
Síða 77
Síða 78
Síða 79
Síða 80
Síða 81
Síða 82
Síða 83
Síða 84
Síða 85
Síða 86
Síða 87
Síða 88
Síða 89
Síða 90
Síða 91
Síða 92
Síða 93
Síða 94
Síða 95
Síða 96
Síða 97
Síða 98
Síða 99
Síða 100
Síða 101
Síða 102
Síða 103
Síða 104
Síða 105
Síða 106
Síða 107
Síða 108
Síða 109
Síða 110
Síða 111
Síða 112
Síða 113
Síða 114
Síða 115
Síða 116
Síða 117
Síða 118
Síða 119
Síða 120

x

Jökull

Beinleiðis leinki

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.