Jökull


Jökull - 01.01.2015, Síða 34

Jökull - 01.01.2015, Síða 34
Þorsteinsdóttir et al. EXPLOSIVE VOLCANISM: WET VERSUS DRY ERUPTIONS Explosive eruptions are of two different kinds, mag- matic explosive eruptions were the explosive ac- tivity is first and foremost caused by gas ex- pansion in the magma and secondly hydromag- matic/phreatomagmatic eruptions which are caused by interaction between external water and magma (White and Houghton, 2000; Morrisey et al., 2000; Vergniolle and Mangan, 2000; Cashman et al., 2000; Francis, 2001; Francis and Oppenheimer, 2004). Magmatic eruptions Magmatic eruptions (sometimes called dry eruptions), are divided into several types, for example Hawai- ian, Strombolian and Plinian eruptions. They are as mentioned earlier, eruptions where only volatiles take place in the explosive activity. The two basic pro- cesses of tephra formation are fragmentation of the magma and the cooling of the fragments or clasts (Cashman et al., 2000; Vergniolle and Mangan, 2000; Francis and Oppenheimer, 2004). In the following only silicic magma is considered. Fragmentation of magma may occur when the ten- sile strength of the melt is exceeded. If strain rates are very high the magma cannot deform fast enough and the melt can break as a solid matter would, in a brittle fashion (e.g. Cashman et al., 2000; Zhang, 1999). Fragmentation in magmatic eruptions where the magma is high-viscosity silicic magma may result either from rapid acceleration or rapid decompression of magma according to Cashman et al. (2000). Hydromagmatic eruptions Hydromagmatic eruptions are divided into three cat- egories: Phreatic eruptions where magma is not directly involved, phreatomagmatic eruptions and phreatoplinian eruptions where the fragmentation is partly or solely the result of interaction with water and can produce extremely fine-grained tephra. Frag- mentation in hydromagmatic eruptions is much more complex process than in magmatic eruptions. The presence of external water can affect both fragmenta- tion and cooling at various stages in an eruption (e.g. Morrisey et al., 2000; White and Houghton, 2000; Zi- manowski et al., 1997; Wohletz, 1983). Fragmentation in most of the phreatoplinian erup- tions described by Houghton et al., (2000) was brought about by vesiculation and bubble expansion as well as by quenching by external water. The pumice clasts were vesicular enough to imply that the magma had already formed foam and perhaps begun to fragment or disintergrate when it first en- countered external water. The fragmentation resulting from the magma-water interaction could be the result of thermal contraction upon quencing, brittle failure caused by high shear rate resulting from expansion of steam or both these mechanisms. Lithics appear to be less common in phreatoplinian eruptions than in the basaltic ones. This could suggest that the fragmenta- tion caused by water takes place at the interface be- tween the magma and overlying ice/water, rather than deeper in the conduit (Dellino et al., 2012). METHODS Tephra samples were collected along the thickness axes of the SILK-LN and H-1947 tephra layers from undisturbed tephra. Samples in two cross sections of SILK-LN tephra were also collected. At each lo- cation the tephra layers were cleaned, photographed, measured and macroscopic features described such as bedding, grading, colour, texture, grain size and grain types (for details see Þorsteinsdóttir 2015). Following logging, bulk samples and/or samples from particu- lar units within the layer were collected. Samples of the Katla SILK-LN tephra (Figure 2) were collected from 10 previously logged soil sections (Larsen un- publ. data). The H-1947 samples were collected in 3 places (Figure 4) in addition to the field and laboratory measurement of Thorarinsson (1954). Grain size analysis Sieving (by hand to avoid breaking/abrading) was used for size fractions larger than 4Φ (0.063 mm) and settling velocity for smaller than 4Φ. A Sedigraph (Micromeritics, 2010) was used for grains smaller than 4Φ. The results from both methods were com- bined and plotted on a graph, showing the complete grain size distribution of each tephra sample. Grain size distribution can provide important in- formation about an eruption because different erup- tion conditions influence both size and shape of the 34 JÖKULL No. 65, 2015
Síða 1
Síða 2
Síða 3
Síða 4
Síða 5
Síða 6
Síða 7
Síða 8
Síða 9
Síða 10
Síða 11
Síða 12
Síða 13
Síða 14
Síða 15
Síða 16
Síða 17
Síða 18
Síða 19
Síða 20
Síða 21
Síða 22
Síða 23
Síða 24
Síða 25
Síða 26
Síða 27
Síða 28
Síða 29
Síða 30
Síða 31
Síða 32
Síða 33
Síða 34
Síða 35
Síða 36
Síða 37
Síða 38
Síða 39
Síða 40
Síða 41
Síða 42
Síða 43
Síða 44
Síða 45
Síða 46
Síða 47
Síða 48
Síða 49
Síða 50
Síða 51
Síða 52
Síða 53
Síða 54
Síða 55
Síða 56
Síða 57
Síða 58
Síða 59
Síða 60
Síða 61
Síða 62
Síða 63
Síða 64
Síða 65
Síða 66
Síða 67
Síða 68
Síða 69
Síða 70
Síða 71
Síða 72
Síða 73
Síða 74
Síða 75
Síða 76
Síða 77
Síða 78
Síða 79
Síða 80
Síða 81
Síða 82
Síða 83
Síða 84
Síða 85
Síða 86
Síða 87
Síða 88
Síða 89
Síða 90
Síða 91
Síða 92
Síða 93
Síða 94
Síða 95
Síða 96
Síða 97
Síða 98
Síða 99
Síða 100
Síða 101
Síða 102
Síða 103
Síða 104
Síða 105
Síða 106
Síða 107
Síða 108
Síða 109
Síða 110
Síða 111
Síða 112
Síða 113
Síða 114
Síða 115
Síða 116
Síða 117
Síða 118
Síða 119
Síða 120

x

Jökull

Beinleiðis leinki

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.