Fróðskaparrit - 01.01.2007, Side 130

Fróðskaparrit - 01.01.2007, Side 130
128 VALIDATION OF THE ECMWF ANALYSIS WAVE DATA FOR THE AREA AROUND THE FAROE ISLANDS to verify that the ECMWF wave model (henceforth called EW4) is well suited to provide boundary conditions and forcing for a high-resolution local wave model. The four periods, which are chosen for this validation, are centred around the largest wave heights, recorded in the de- ployment time of the directional waverider WVD-4 south of Faroe Islands (Figure 1). Each period spans one month, such that the general skill of the EW4 model can be in- vestigated in average and extreme circum- stances. The ECMWF wave model The wave model at ECMWF is a slightly adapted version of the WAM cycle 4 model (ECMWF, 2004, Janssen, 2004, Janssen et al., 2005). WAM is a third generation wave model, which solves the wave transport equation explicitly without any ad hoc as- sumption on the shape of the wave energy spectrum. The basic transport equation in Cartesian co-ordinates is: ðe (1) where F(a,Q) is the wave energy spectrum, t is time, a is the intrinsic angular fre- quency, 0 is the wave direction measured clockwise from true north, c and c are propagation velocities in geographical space, ca and c0 are the propagation veloci- ties in frequency and directional space re- spectively. If Sto=0, Eq. 1 gives the local rate of change of wave energy density due to spatial propagation, and depth induced shoaling and refraction. The effects of cur- rents on the wave transport equation are omitted here as the effects of currents on oceanic scales are usually negligible (Komen et al., 1994). The right hand side of Eq. 1 represents all effects of generation, dissipation and wave-wave interactions. The total source term can be expressed as Sto=Sjn+ Sds + Snl, where S.n is the wind input, Sds is the wave dissipation and Snl is the Discrete Interac- tion Approximation (DIA) to the non-lin- ear quadruplet wave-wave interactions. More detailed information on the WAM model and its source terms can be found in Komen et al. (1994). Direct application of the WAM model to global scales will result in numerical difficulties with the areas close to the poles (as the distance in latitude direction de- creases, this causes problems with the CFL-criterion). This problem is solved in the ECMWF-WAM (EW4) model by using an irregular spherical grid, where the dis- tance in latitude direction is more or less fixed to its value at the equator (ECMWF, 2004). As the model results validated here are derived from a regular spherical 0.25° by 0.25° grid as disseminated by ECMWF, some interpolation has been made in the parameter values. The 2D-wave spectra are not interpolated, but set equal to the closest point from the staggered grid (find more information on the ECMWF wave model interpolation schemes on http://www.ecmwf.int). A weather or sea state forecast is essen- tially an initial value problem. Given the initial state, the further development in time can be calculated. The problem is,
Side 1
Side 2
Side 3
Side 4
Side 5
Side 6
Side 7
Side 8
Side 9
Side 10
Side 11
Side 12
Side 13
Side 14
Side 15
Side 16
Side 17
Side 18
Side 19
Side 20
Side 21
Side 22
Side 23
Side 24
Side 25
Side 26
Side 27
Side 28
Side 29
Side 30
Side 31
Side 32
Side 33
Side 34
Side 35
Side 36
Side 37
Side 38
Side 39
Side 40
Side 41
Side 42
Side 43
Side 44
Side 45
Side 46
Side 47
Side 48
Side 49
Side 50
Side 51
Side 52
Side 53
Side 54
Side 55
Side 56
Side 57
Side 58
Side 59
Side 60
Side 61
Side 62
Side 63
Side 64
Side 65
Side 66
Side 67
Side 68
Side 69
Side 70
Side 71
Side 72
Side 73
Side 74
Side 75
Side 76
Side 77
Side 78
Side 79
Side 80
Side 81
Side 82
Side 83
Side 84
Side 85
Side 86
Side 87
Side 88
Side 89
Side 90
Side 91
Side 92
Side 93
Side 94
Side 95
Side 96
Side 97
Side 98
Side 99
Side 100
Side 101
Side 102
Side 103
Side 104
Side 105
Side 106
Side 107
Side 108
Side 109
Side 110
Side 111
Side 112
Side 113
Side 114
Side 115
Side 116
Side 117
Side 118
Side 119
Side 120
Side 121
Side 122
Side 123
Side 124
Side 125
Side 126
Side 127
Side 128
Side 129
Side 130
Side 131
Side 132
Side 133
Side 134
Side 135
Side 136
Side 137
Side 138
Side 139
Side 140
Side 141
Side 142
Side 143
Side 144
Side 145
Side 146
Side 147
Side 148
Side 149
Side 150
Side 151
Side 152
Side 153
Side 154
Side 155
Side 156
Side 157
Side 158
Side 159
Side 160
Side 161
Side 162
Side 163
Side 164
Side 165
Side 166
Side 167
Side 168
Side 169
Side 170
Side 171
Side 172
Side 173
Side 174
Side 175
Side 176
Side 177
Side 178
Side 179
Side 180
Side 181
Side 182
Side 183
Side 184
Side 185
Side 186
Side 187
Side 188
Side 189
Side 190
Side 191
Side 192
Side 193
Side 194
Side 195
Side 196
Side 197
Side 198
Side 199
Side 200
Side 201
Side 202
Side 203
Side 204
Side 205
Side 206
Side 207
Side 208
Side 209
Side 210
Side 211
Side 212

x

Fróðskaparrit

Direkte link

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Fróðskaparrit
https://timarit.is/publication/15

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.