Jökull


Jökull - 01.12.1976, Side 25

Jökull - 01.12.1976, Side 25
10 Fig. 5. Resonance period for the borehole- cavity system according to equation (16). Mynd 5. Eiginsveiflutími borholukerfis sam- kvæmt jöfnu (16). w(P,t) = 0 for r §: R (1) Hence, the displacement is assumed to be limit- ed to the region r < R. (4) In computing the resonant frequency of the Helmholtz cavity mode we neglect the kine- tic energy of the fluid in the cavity. The basic differential equation for the dis- placement vector u(P, t) in a Hookean solid with no impressed volume forces is (Love, 1927) /xV-u + (X + /r)VV • u = pdnu (2) where p0 is the density and X and p, the Lamé constants of the solid. Based on the assumptions (1) to (4) above, the equation for w(P,t) is con- sequently, p03ttW + Lw = 0, P in (0,R;0,“=) (3) where L is the operator L = -[p(arr+(l/r)3r) + (X + 2p)3J (4) and the boundary conditions are w = 0, r = R and p = -(X + 2p)3zw , for r < R (5) Assuming purely harmonic motion with the angular frequency a), w(P,t) = w(P)exp(i(yt) (6) we obtain the following eigenvalue equation for the amplitude w(P) Lw = p0o)2w, (7) with the above boundary conditions. In the first approximation we can indentify the Helmholtz mode with the lowest eigenmode of (7) and assume for this case that w(P) = AJ0(kr)exp[-zV(pX2 - p0co2)/(X + 2p)] (8) where k = 2.4/R and A is a constant. A brief investigation shows that at the assumed condi- tions Poft)2« pX~, (9) that is, we can neglect the inertia of the rock. Moreover, assuming Poisson’s relation X = p., we obtain then with the help of (5) approxi- mately w(r,0) = (PR/4p)J0(2.4r/R), (10) and by an integration over 0 ^ r ^ R approxi- mately (including both halfs) B e = (47r/p) fwrdr = 0.69R3/p (11) J O Having obtained the elastance of the cavity we can now write the equation for the dynamics of the fluid column in the borehole. Let x be the vertical displacement of the column (posi- tive downward), then in a force free case ahpD2x + pa = 0 (12) where D = d/dt and p is the density of the fluid. Since for small x and p e = dV/dp = ax/p (13) or x = pe/a we have the simple equation for the pressure oscillations D2P + (a/ehp)P = 0 (14) and hence the resonant frequency m = Va/ehp = Vpa/0.69hpR3 (15) JOKULL 26. AR 23
Side 1
Side 2
Side 3
Side 4
Side 5
Side 6
Side 7
Side 8
Side 9
Side 10
Side 11
Side 12
Side 13
Side 14
Side 15
Side 16
Side 17
Side 18
Side 19
Side 20
Side 21
Side 22
Side 23
Side 24
Side 25
Side 26
Side 27
Side 28
Side 29
Side 30
Side 31
Side 32
Side 33
Side 34
Side 35
Side 36
Side 37
Side 38
Side 39
Side 40
Side 41
Side 42
Side 43
Side 44
Side 45
Side 46
Side 47
Side 48
Side 49
Side 50
Side 51
Side 52
Side 53
Side 54
Side 55
Side 56
Side 57
Side 58
Side 59
Side 60
Side 61
Side 62
Side 63
Side 64
Side 65
Side 66
Side 67
Side 68
Side 69
Side 70
Side 71
Side 72
Side 73
Side 74
Side 75
Side 76
Side 77
Side 78
Side 79
Side 80
Side 81
Side 82
Side 83
Side 84
Side 85
Side 86
Side 87
Side 88
Side 89
Side 90
Side 91
Side 92
Side 93
Side 94
Side 95
Side 96
Side 97
Side 98
Side 99
Side 100
Side 101
Side 102
Side 103
Side 104

x

Jökull

Direkte link

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.