Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1976, Qupperneq 25

Jökull - 01.12.1976, Qupperneq 25
10 Fig. 5. Resonance period for the borehole- cavity system according to equation (16). Mynd 5. Eiginsveiflutími borholukerfis sam- kvæmt jöfnu (16). w(P,t) = 0 for r §: R (1) Hence, the displacement is assumed to be limit- ed to the region r < R. (4) In computing the resonant frequency of the Helmholtz cavity mode we neglect the kine- tic energy of the fluid in the cavity. The basic differential equation for the dis- placement vector u(P, t) in a Hookean solid with no impressed volume forces is (Love, 1927) /xV-u + (X + /r)VV • u = pdnu (2) where p0 is the density and X and p, the Lamé constants of the solid. Based on the assumptions (1) to (4) above, the equation for w(P,t) is con- sequently, p03ttW + Lw = 0, P in (0,R;0,“=) (3) where L is the operator L = -[p(arr+(l/r)3r) + (X + 2p)3J (4) and the boundary conditions are w = 0, r = R and p = -(X + 2p)3zw , for r < R (5) Assuming purely harmonic motion with the angular frequency a), w(P,t) = w(P)exp(i(yt) (6) we obtain the following eigenvalue equation for the amplitude w(P) Lw = p0o)2w, (7) with the above boundary conditions. In the first approximation we can indentify the Helmholtz mode with the lowest eigenmode of (7) and assume for this case that w(P) = AJ0(kr)exp[-zV(pX2 - p0co2)/(X + 2p)] (8) where k = 2.4/R and A is a constant. A brief investigation shows that at the assumed condi- tions Poft)2« pX~, (9) that is, we can neglect the inertia of the rock. Moreover, assuming Poisson’s relation X = p., we obtain then with the help of (5) approxi- mately w(r,0) = (PR/4p)J0(2.4r/R), (10) and by an integration over 0 ^ r ^ R approxi- mately (including both halfs) B e = (47r/p) fwrdr = 0.69R3/p (11) J O Having obtained the elastance of the cavity we can now write the equation for the dynamics of the fluid column in the borehole. Let x be the vertical displacement of the column (posi- tive downward), then in a force free case ahpD2x + pa = 0 (12) where D = d/dt and p is the density of the fluid. Since for small x and p e = dV/dp = ax/p (13) or x = pe/a we have the simple equation for the pressure oscillations D2P + (a/ehp)P = 0 (14) and hence the resonant frequency m = Va/ehp = Vpa/0.69hpR3 (15) JOKULL 26. AR 23
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.