Jökull


Jökull - 01.12.1977, Síða 78

Jökull - 01.12.1977, Síða 78
0.60 km3/yr (0.50 km3/yr i'rom Grímsvötn and 0.10 km3/yr from the cauldrons). Consider the cause of the increased runoff towards Skaftá since the early 1950ies. Thermal activity may have migrated across the water divide of the Grímsvötn water basin as a result of small fluctuations in the surface activity of the geothermal field. Such fluctuations can result frorn intrusive activity at shallow levels and from tectonic events. However, according to the liydrological data, the total geothermal power in the central part of Vatnajökull did not increase as the runoff towards Skaftá in- creased in the 1950ies. The strength of the geo- thermal field seems to have remained fairly con- stant. If the Grímsvötn geothermal field has expandecl, this has taken place at the expense of the average lieat flux density. Alternatively, the Grímsvötn water basin may have diminished in area and an increased part of the geothermal field been left outside the water basin. The ice cauldron which was formed in 1955 is situated in an area where the direc- tions of runoff are fairly sensitive to changes in the glacier surface topography. The glacier surface contours turn from east-west to north- west direction at this site (Fig. 1). Tlie general shrinkage of Vatnajökull in the first lialf of this century has changed the glacier surface topo- graphy and affected the drainage of meltwater at tlie glacier bottom. In 1938 an extensive de- pression was formed north of Grímsvötn (7 km long, 2 km wide, 200—300 m deep) (Fig. 1). At about 1950 the depression liad been refillecl with ice. In 1955 the eastern ice cauldron was formed about 4 km west of the site where the depression was forrned in 1938. THE ACCUMULATION OF MELTWATER AND TRIGGERING OF THE JÖKULHLAUPS Björnsson (1974, 1975) and Nye (1976) have explained how water can be accumulated at a glacier bottom if melting by geothermal activity has created a depression in the glacier surface. Ice will flow towards the geothermal area where it melts. The meltwater does not drain con- tinuously away, but becomes trapped at the bed beneath the depression. The water storage is sealed off by a pressure barrier because the over- burden pressure is lower beneath the depres- sion than around it. The water pressure will increase beneath the depression as a water cupola rises above the glacier bed. A jökul- hlaup occurs if the pressure barrier is reduced to zero. Björnsson (1975) presented a model which predicts a jökulhlaup from the present water cupola when the ice surface has risen about 100 m. If all water drains out of the cupola during the jökulhlaup, an ice cauldron witli a diameter of 2 km will be formed. The agree- ment with observations is fairly good. In the model, the ice thickness above the cupola is constant, that is to say, the ice melted at the geothermal area equals the inflow of ice. The geothermal activity beneath the ice cauldron has not been constant in time. The production of meltwater has increased on the average since 1955 (Fig. 4). The inflow of ice to the geothermal area may be variable, there- fore, one can expect some variations with time in the thickness of the ice above the water cupola. Hence, fluctuations in the height of the water cupola are to be expected. A jökulhlaup occurs if a given value for the ice overburden pressure outside the depression is matched by the total overburden pressure of water and ice at the cupola. If the ice thickness above the cupola is decreased, the cupola itself would have to rise liigher than before for a jökulhlaup to be triggered. Botli the volume of the water cupola and the time interval between the jökul- hlaups would be increased. This may explain the trend of both increased water volumes of jökulhlaups and increased intervals between jök- ulhlaups from 1955 to 1965 (Fig. 4). An increase in the ice thickness above the cupola, on the other hand, may explain the trend of decreased volumes of jökulhlaups from 1965 to 1970. A variation in tlie volume of cupolas from 100-10° m3 to 250 • 10° m3 corresponds to a variation in the heights of water cupolas from 90 m to 120 m. No simple model can describe tlie accumula- tion of meltwater ancl triggering of the jökul- hlaups after 1970. This may result from the formation of the western ice cauldron. 76 JÖKULL 27. ÁR
Síða 1
Síða 2
Síða 3
Síða 4
Síða 5
Síða 6
Síða 7
Síða 8
Síða 9
Síða 10
Síða 11
Síða 12
Síða 13
Síða 14
Síða 15
Síða 16
Síða 17
Síða 18
Síða 19
Síða 20
Síða 21
Síða 22
Síða 23
Síða 24
Síða 25
Síða 26
Síða 27
Síða 28
Síða 29
Síða 30
Síða 31
Síða 32
Síða 33
Síða 34
Síða 35
Síða 36
Síða 37
Síða 38
Síða 39
Síða 40
Síða 41
Síða 42
Síða 43
Síða 44
Síða 45
Síða 46
Síða 47
Síða 48
Síða 49
Síða 50
Síða 51
Síða 52
Síða 53
Síða 54
Síða 55
Síða 56
Síða 57
Síða 58
Síða 59
Síða 60
Síða 61
Síða 62
Síða 63
Síða 64
Síða 65
Síða 66
Síða 67
Síða 68
Síða 69
Síða 70
Síða 71
Síða 72
Síða 73
Síða 74
Síða 75
Síða 76
Síða 77
Síða 78
Síða 79
Síða 80
Síða 81
Síða 82
Síða 83
Síða 84
Síða 85
Síða 86
Síða 87
Síða 88
Síða 89
Síða 90
Síða 91
Síða 92
Síða 93
Síða 94
Síða 95
Síða 96
Síða 97
Síða 98
Síða 99
Síða 100
Síða 101
Síða 102
Síða 103
Síða 104
Síða 105
Síða 106
Síða 107
Síða 108
Síða 109
Síða 110
Síða 111
Síða 112
Síða 113
Síða 114
Síða 115
Síða 116

x

Jökull

Beinleiðis leinki

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.