Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1977, Qupperneq 84

Jökull - 01.12.1977, Qupperneq 84
and hence the angular frequency a>, = (32) The pressure impulse response hp (S,t) of an unperturbed static fluid is obtained by assum- ing causal conditions and that the fluid surface 2 is hit at t = 0+ by a 8-like pressure pulse which is centered at R, viz., Po (S.t) = 8 (S—R) 8+ (t) (33) or MS.t) = (l/gp)8(S-R)8+(t) (34) and hence K (S.t) = (l/gp) 8+ (t) 2Uj (S) Uj* (R) (35) i where 8+ (t) is the timelike delta function centered at t = 0 + . Let the impulse hp be expanded hp = S aj (t) uj (S), t > 0 (36) j and insert this and h0 into equation (27). The operation with H given by (14) is straightfor- ward and yields for each mode D2aj + gXj'^aj = - (1/p) XjV2Uj* (R) 8+ (t), t > 0 (37) aj = 0, t ^ 0 where D = d/dt and the factor exp (—Xj1/5z) I z X 0 has been omitted. The solution for aj is elementary and yields aj = — (1 /p) (Xj%/g)V2Uj* (R) sin (gV*XjMt), t > 0 (38) and hence the impulse response hp (S,t) = - (1 /pg%) lim 2 exp (—Xj,/2z) Xjw sin (g*Xj" t) Uj (S) Uj* (R), t > 0 (39) z f 0 J The basin of infinite extent is of special interest. In this case we substitute the continu- ous variable k for the discrete j’s and the eigen- functions and eigenvalues are </>k (x>y) = (1/2-tt) exp [-i(kix+k2y)], (40) Xk = k2 = ki“ + k22. The dispersion equation for the infinite basin follows directly from equation (31) above by inserting Xj’/2 = k and hence o>2 — gk = 0 (41) This expression gives the well known phase velocity of gravity waves c = (g/k),/2- (42) The impulse response for the infinite basin is obtained by inserting (40) into (39) and ob- serving that the summation over j becomes an integration over k. Placing the impulse at the origin and taking advantage of the radial sym- metry in k-space we obtain the well known result (Stoker, 1957, page 160) t > 0 (43) hp (r.t) ■ (1 / 27rpg'4) lim J exp (—kz) J0 (kr) sin [t(gk)V2j k3/2dk, z 10 where r is the radial coordinate in 2- 82 JÖKULL 27. ÁR
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.