Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1977, Qupperneq 83

Jökull - 01.12.1977, Qupperneq 83
Horizontal fluid surface be X- We consider noqtion of the fluid with the velocity vector v (P,t) = (u,v,w) (P,t) and the pressure p (P,t) at the point P = (x,y,z) in F and time t. Under motion the free íluid surface is t). The Eulerian equations of motion for the fluid F take the forrn pDv/Dt = -Vp + pg (16) 'vhere D/Dt is the material derivative and g is the acceleration of gravity. Assuming no fluid sources these equations have to be adjoined by the condition of incompressibility V-v = 0. (17) Disregarding surface tension, the boundary conditions are Dp/Dt | j_0 = 0, Ponfl (18) and n • v = 0, P on r, (19) where n is the outward normal to T- In the case of small amplitude motion, we linearize (16) by neglecting the product terms on the left and assume that p = pb + p where ph is the hydrostatic pressure and p (P,t) is a small perturbation pressure such that |p|«|p|,|. We obtain on the basis of (16) p3tv = -VP (20) and applying (17) to (20) the standard result -V2P = 0 (21) follows revealing tliat p is a harmonic function in 15. The boundary condition for p is dp/dn = 0, P on r. (22) Moreover, since 3zph = gp, the linearized sur- face condition (18) reduces to 9tP + wpg = °’ p on fi- (23) As a final step of linearization, we move the condition (23) from Í1 to X by assuming that Í1 deviates from X by a small vertical amplitude h (S,t) which is positive up. Tlie perturbation pressure on X can then be approximated by P = pgh- The value of the vertical fluid velocity w is assumed to be the same on X as on fl and hence (23) reduces to 3th + w = 0. (25) Inserting w from (25) into the vertical com- ponent of (20) we finally obtain p9tth = 9ZP> P °n X’ (26) which in conjunction witli (21) and (22) is an equation for gravity waves of infinitesimal am- plitude. This form is, however, unsatisfactory since it includes two dependent variables h and p. The situation can be rectified by observing tliat because p is liarmonic in B its cross surface derivative at X can He expressed in terms of the values of P on X with the help of the sur- face operator H defined by (6). Hence, using (24) and (6) we can eliminate p from (26). In carrying out this final step we are also able to generalize (26) by including an impressed pres- sure source term in (24) represented by an impressed surface amplitude ho (S,t). The re- sulting equation is (9tt + gH) h = f, S in X’ (27) tvhere the source term is f = —gHh0. (28) Using the inverse of H defined by (15), we can also restate (27) in the following form (K9tt + g) h = —gh0. (29) The integro-differential equation (27) is our main result, the gravity wave equation to be derived. As stated, it applies to waves of in- finitesimal amplitude on deep water. NORMAL MODES, IMPULSE RESPONSE AND DISPERSION RELATION The gravity wave normal modes are obtained lty assuming for the jth mode hj = iq exp (icojt) (30) and inserting in (27) with f = 0 we obtain the simple mode relation -cof + gXjV2 = 0 (31) JÖKULL27. ÁR 81 (24)
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.