Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.01.2020, Qupperneq 39

Jökull - 01.01.2020, Qupperneq 39
Vestergaard et al. 2003; Gudnason et al., 2017; Janebo et al., 2018, Einarsson, 2018; Barsotti et al., 2019). The effu- sive eruption of Hekla lavas also represent a hazard for the surrounding settlements and farmland, but has remained understudied in particular the lavas erupted before the 20th century (Jakobsson, 1979; Pedersen et al., 2018b). There is therefore sparse information re- garding lava-flow emplacement, lava morphology and lava volumes. For example, the eruptions in 1845–46 and 1766–68 are some of the largest known eruptions from Hekla since the settlement. They are comparable in volumes to the 0.4 km3 eruption of Surtsey 1963– 67 (lava shield part) and to the recent 1.44 km3 2014– 15 eruption of Holuhraun, respectively (Thórarins- son, 1967; Thordarson, 2000; Thordarson and Larsen, 2007; Janebo et al., 2016a,b; Pedersen et al., 2017, 2018a,b; Bonny et al., 2018; Gudnason et al., 2018). Previous work has concluded that Hekla’s plumb- ing system involves a single, zoned magma source and that the most silica-rich magmas (rhyolite) are tapped from the topmost layer during the initial explo- sive phase (particularly the case for prehistoric erup- tions) (Sigmarsson et al., 1992; Sverrisdottir, 2007). During the subsequent effusive eruptions the SiO2 of the erupted melts declines towards basaltic andesite (ca. 54 wt%) (Sigmarsson et al., 1992; Thordarson and Larsen, 2007). Following this hypothesis, a nega- tive correlation of silica content and relative emplace- ment age is expected during eruptions. The aim of the present study is to extend the understanding of the effusive activity at Hekla using remote sensing data, petrology, geochemistry (with focus on whole rock SiO2 values and their correlation with relative lava emplacement age, and on estimating viscosity) and historical sources of the 1845–46 and 1766–68 eruptions. The two eruptions are selected to improve knowledge of large, effusive activity of Hekla. The 1947–48 eruption is also included as a benchmark since its activity and eruptive products have already been extensively recorded (e.g. Thórarinsson, 1976, Pedersen et al., 2018a). In particular, the goals are to (i) estimate the erupted volumes; (ii) qualitatively outline the emplacement time-lines of the lava-flows; (iii) discuss lava morphology and viscosity, and (iv) discuss magma chamber dynamics of these eruptions. BACKGROUND The volcano Hekla The volcano Hekla is located in the southern part of Iceland at the intersection of the South Iceland Seismic Zone (SISZ) and the Eastern Volcanic Zone (EVZ) (Sæmundsson, 1978; Jakobsson, 1979) (Figure 1). The Hekla volcanic system consists of a NE-SW trending fissure swarm and a central volcano rang- ing from basalt to rhyolite in composition (Thórar- insson, 1967; Jakobsson, 1979; Sigmarsson et al., 1992; Sverrisdottir, 2007; Larsen et al. 2013; Tuller- Ross et al., 2019). Today the central volcano forms a 5–6 km elongated steep-sided ridge that reaches a height of 1490 m a.s.l., superimposed on a basaltic base and oriented parallel to the 60 km NE-SW fis- sure swarm (Sæmundsson, 1978; Jakobsson, 1979). The nature of the magma chamber beneath the central volcano has been debated. Most authors argue that the changing compositions of the tephras from rhyolite to basaltic andesite demonstrate tapping of a chemically- stratified magma chamber (Sigmarsson et al., 1992; Sverrisdottir, 2007). Sigmarsson et al. (1992) initially argued for a very large (20 km long, 5 km wide and ca. 7 km deep) magma chamber with the top ca. 8 km below the surface. Subsequently others have sug- gested slightly modified architectures such as a dyke- formed magma chamber (Sverrisdottir, 2007) or sep- arate small, connected magma chambers undergo- ing closed and/or open system geochemical evolution (Chekol et al., 2011). Recent geophysical models confirm that the magma chamber is indeed very deep, probably at depths exceeding 10 km (Ofeigsson et al., 2011; Geirsson et al., 2012; Sturkell et al., 2013). Whereas the tephras range from rhyolite (ca. 75 wt% SiO2) to andesite (ca. 57 wt% SiO2) (Sigmarsson et al., 1992; Sverrisdottir, 2007; Janebo et al., 2018), the compositional range of the lavas is more restricted from andesite (ca. 58 wt% SiO2) to basaltic andesite (ca. 54 wt% SiO2), which is the typical end compo- sition (Thórarinsson, 1967; Sigmarsson et al., 1992; Larsen et al., 1999; Sverrisdottir, 2007). All the major eruptions occur in the main fissure along the summit ridge, and historical sources describe how the ridge sometimes split in two during eruptions; more com- plex fissure opening have also been described (Thór- 36 JÖKULL No. 70, 2020
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.