Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.01.2020, Qupperneq 41

Jökull - 01.01.2020, Qupperneq 41
Vestergaard et al. arinsson, 1967; Larsen et al., 2013; Pedersen et al., 2018b). In Holocene times, Hekla has mainly pro- duced mixed eruptions which encompasses both ex- plosive and effusive activity (Thordarson and Larsen, 2007; Thordarson and Höskuldsson, 2008; Pedersen et al., 2018b). The eruptions in 1947–48, 1845–46 and 1766–68 were no exceptions (Figure 1). All three be- haved rather similarly, exhibiting a highly explosive subplinian to plinian initial phase (VEI 4) with sig- nificant tephra fallout (Houghton et al., 2013; Janebo et al., 2016a; Gudnason et al., 2018). The follow- ing phases were: fire fountaining, strombolian activity ending with an effusive phase generating large lava- flow fields (Thórarinsson, 1967, 1976; Larsen et al., 1999; Thordarson and Larsen, 2007; Thordarson and Höskuldsson, 2008; Pedersen et al., 2018b). The 1947–48 and 1766–68 eruptions also showed exam- ples of renewed, violent explosivity during the effu- sive phase, but these events never increased to the same force as the initial phase (Thórarinsson, 1967, 1976). Lava-flow morphology Lava is a common and persistent threat to settle- ments and understanding its properties and emplace- ment mechanisms is key for hazard assessment and for predicting lava-flow behaviour and development (Soule et al., 2004; Takagi and Huppert, 2010; Mon- talvo, 2013). This includes the estimation of lava-flow thickness, volume and emplacement style and history (e.g. Wadge et al., 1975; Stevens et al., 1999; Har- ris et al., 2000; Poland, 2014; Albino et al., 2015; Kubanek et al., 2017; Pedersen et al., 2018a). The development and emplacement of lava-flows hinge on parameters such as rheology, effusion rate and erup- tion duration, temperature, topography and surface slopes and also total volume of lava extruded (Walker, 1973; Pinkerton and Wilson, 1994; Parfitt and Wil- son, 2008). Furthermore, the rheology of the lava evolves during emplacement, because of changes in melt composition, oxygen fugacity and temperature of the magma resulting from gas loss, cooling and crys- tallisation (Hulme, 1974; Fink, 1980; Gregg and Fink, 2000; Kilburn, 2004; Kolzenburg et al., 2018). Hekla typically generates ‘a‘ā lavas (Thórarinsson and Sig- valdason, 1972; Grönvold et al., 1983; Höskuldsson et al., 2007; Thordarson and Höskuldsson, 2008) which are flows with autobrecciated exteriors and a coher- ent liquid interior during emplacement, referred to as the core. The autobreccia comprises irregular clink- ers that have rough, sharp surfaces, and are derived from the flow core (Macdonald, 1953). Common mor- phologies that are mentioned in this study, are sheet- flows which formed in a single surge of lava that is not bounded by levées (banks of solidified lava), and channelised flows of lava bounded between lev- ées (Hulme, 1974; Peterson and Tilling, 1980; Row- land and Walker, 1988; Hon et al., 1994; Harris et al., 2009; Harris and Rowland, 2015). Morphologies related to lava inflation include flat-surfaced plateaus (formed like tumuli) called lava rise, collapsed de- pressions called lava-rise pits, and marginal fractures called lava-inflation clefts (Walker, 1991). They form by the injection of lava beneath the surface layer which leads to simple uplift of the surface without any horizontal compression (Walker, 1991). The lava-rise pits and lava-inflation clefts describe, respectively, lava surfaces that failed to be uplifted, and actively in- flating interior of the lava-flow that detaches from the stagnated margin (Walker, 1991; Hon et al., 1994). Inflation structures are commonly found in pāhoehoe flows (e.g. Macdonald, 1953; Walker, 1991, Hon et al., 1994), but inflation structures and lava tubes also occur in ‘a‘ā flows (e.g. Calvari and Pinkerton, 1998, 1999; Pedersen et al., 2017). Lava tubes are insu- lated conduits of still-molten lava beneath a cooler (ultimately solidified) surface layer (Peterson et al., 1994). The boundary of the inflated lava-flow may breach, thus allowing lava breakouts and thereby new lava lobes. Breakouts do not only occur due to rupture of the cooled skin at weak points, but can also oc- cur due to effusion rate fluctuations (Thordarson and Self, 1998; Rowland and Harris, 2015; Pedersen et al., 2017). The emplacement of breakouts may vary depending on viscosity and effusion rate. DATA AND METHODS Remote sensing data and bulk volume estimates The remote sensing data consists of orthophotos and digital elevation models (DEMs) from 1945–46, 1960 and 2015 (Table 1). The remotely-sensed images 38 JÖKULL No. 70, 2020
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.