Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.01.2020, Qupperneq 52

Jökull - 01.01.2020, Qupperneq 52
The 1845–46 and 1766–68 eruptions at Hekla volcano Pedersen et al. (2018a). This suggests that the plani- metric method may underestimate the lava bulk vol- ume in the order of 40-60%. Wadge (1978) similarly estimated that the planimetric method may underesti- mate volumes by approximately 50%. Thus, consid- ering this, it is likely that the volume of the 1845–46 is 0.5–0.6 km3 and 1766–68 may be 1.0–1.2 km3. Tak- ing this into account, the estimates thus confirms the estimates provided by Thórarinsson (1967). The production rate, which is defined as erupted material in an eruption divided by pre-eruption repose period, varied from 7.4×106 to 40×106 m3yr−1 for the Hekla eruptions during the 20th century (Peder- sen et al., 2018a). Our data yields production rates of 15×106 m3yr−1 and 7.2×106 m3yr−1 for the 1766– 68 (repose period of 73 years) and 1845–46 (repose period of 77 years) eruptions, respectively. Peder- sen et al. (2018a) stated that production rates at Hekla are variable on 10–100 year time scale in contrast to a steady production rate which was proposed earlier (see references therein). Our production rates respec- tively for the 1766–68 and 1845–46 agree with the statement from Pedersen et al. (2018a). Viscosity estimates Viscosity estimates showed that pre-eruptive magmas (2.5×102 Pa s and 2.2×102 Pa s in average for 1766– 68 and 1845–46 eruptions, respectively) were about one order of magnitude more fluid than the degassed magmas (2.5×103 Pa s and 1.9×103 Pa s in average for 1766–68 and 1845–46 eruptions, respectively). In addition to water, decreasing temperature accelerates the increase in viscosity exponentially (Figure 5c). Lowering the temperature has the effect of acceler- ating the increase of viscosity by one to two orders of magnitude (Figure 5c). We expect a large range in the viscosity of lava during emplacement, result- ing in variable shear strain rates and resulting sur- face crust structures (Pedersen et al., 2017). Simi- larly, Kolzenburg et al. (2017) showed that viscosity can increase 3 orders of magnitude during the eruption of Holuhraun. From field observations and studying the orthophotos the sampled lava-flows are from infla- tion structures (18IS-05, -07 and -08), complex mor- phology (18IS-21), channelised flow (18IS-02 and - 06), sheet-like-flow (18IS-16), bulky type of break- out structures (18IS-09) and smooth type of breakout structures (18IS-03 and -15). There is not a simple relationship between the estimated viscosities for the samples and the observed flow morphologies (Table 2). This is most likely due to the large variation in viscosity due to variable degassing, cooling and crys- tallisation during emplacement. We can therefore not assume that our estimates fully capture the entire span of viscosity for the Hekla lavas during the 1766–68 and 1845–46 eruptions, since this would require ac- tual emplacement temperature and actual crystal con- tent measurements. Combining Hekla’s emplacement time-lines and SiO2 contents Several models of the magma reservoir beneath Hekla’s central volcano have been suggested to ex- plain the chemically-zoned tephra deposits. Hekla tephras typically change from silicic (white) of rhy- olite composition at the base grading upwards to an- desite composition (black) at the top, followed by lavas of the composition andesite (ca. 58 wt% SiO2) to basaltic andesite (54 wt% SiO2) as typical end com- position (Sigmarsson et al., 1992; Sverrisdottir, 2007; Chekol et al., 2011; Janebo et al., 2018). This has been explained by a stratified magma chamber model with the most SiO2 rich magmas at the top. This pop- ular model was first proposed by Sigmarsson et al. (1992) and has been slightly modified by Sverrisdottir (2007) and Chekol et al. (2011). Thus, the tapping of such a stratified plumbing system starts with the most silica-rich magmas (rhyolite) during the initial explosive phase (Thórarinsson, 1967; Sigmarsson et al., 1992; Sverrisdottir, 2007; Janebo et al., 2016b). The SiO2 content of the later tephras and lavas de- cline to andesite and basaltic andesite (Sigmarsson et al., 1992; Sverrisdottir, 2007). Therefore, it is to be expected that the silica content of the large lava- flow fields will also follow this pattern, showing a de- cline of SiO2 over time. Our data enables us to test this hypothesis by comparing the emplacement time- lines with the SiO2 of the samples (Table 2). For the 1845–46 and 1947–48 eruptions, the SiO2 evo- lution is indeed decreasing with time, supporting the stratified magma chamber model (Figure 6b, c). In these cases, the SiO2 contents of the studied samples JÖKULL No. 70, 2020 49
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.