Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.01.2019, Qupperneq 96

Jökull - 01.01.2019, Qupperneq 96
Eyjafjallajökull ankaramites, South Iceland Regarding the Brattaskjól olivine zonation, the most plausible explanation for the detected steps and changes in the slope of the Fe-Mg zoning patterns in the Fo>85.4 olivine grains (Figure 2b) is a combina- tion of solid-state diffusion and episodes of olivine growth from an evolving host liquid. The rim-growth events in the normally zoned olivine macrocrysts may have been caused by step-like ascent of the olivine- carrying host liquid, episodic changes in the host- liquid composition, infiltration of liquid into the sys- tem (i.e., magma mixing), or related to movement of olivine macrocrysts within a magmatic system with temperature gradients (see Pankhurst et al., 2018). The high-Fo bands in the rims of the complex re- verse zoned Brattaskjól olivine macrocrysts indicate mixing between an olivine rim forming primitive melt and the more evolved olivine cores with Fo80−84.4. Below, we refer to these high-Fo bands in the olivine macrocryst rims as ’mixing plateaus’. Although the Fo content in the mixing plateaus varies, three olivine crystals show mixing plateaus with Fo85.4 composi- tion (Figure 6a, b and d), and the lowest Fo mixing plateaus are in-fact not compositional plateaus but ap- pear as sharp high-Fo tips in the analytical traverses (Figure 6c and e). This, along with the fact that all Fo<84.4 olivine macrocrysts have complex reverse zoned rims, implies that all the mixing plateaus near olivine rims may have had an original composition of Fo85.4 and the Fo content in some of the mixing plateaus has later degreased in response to partial dif- fusive equilibration with the carrier melt. We suggest that these Fo85.4 mixing plateaus formed during a magmatic recharge event in which a melt (with Mg#melt of ∼63 in equilibrium with Fo85.4 olivine; Toplis, 2005) intruded an olivine-bearing crystal mush. We propose this "magma-recharge model" as (i) it offers a simple explanation why the Fo<84.4 olivine grains are consistently reverse zoned, (ii) the large amount (∼30 vol%) of compositionally variable macrocrysts in the Brattaskjól ankaramite suggests a cumulative origin for the macrocrysts, and (iii) mixing of magmas and crystal mushes is com- mon in Icelandic magmatic systems (Halldorsson et al., 2008; Neave et al., 2013; Halldórsson et al., 2018). In particular, the consistent change from com- plex reverse to normally zoned olivine at Fo84.4−85.4 (Figure 2a), and the varying offset in Fo content (1– 3 mol%) between mixing plateaus and crystal cores, support a magma-recharge origin for the complex re- verse zonation in olivine macrocrysts. Alternatively, the complex reverse zoned olivine macrocrysts could have been formed during their movement in a crustal intrusion with temperature gradients (cf. Pankhurst et al., 2018). Considering the low number of analysed crystals, our data cannot disprove, but neither particu- larly support, this mode of formation. Assuming that our hypothesis of the magma recharge origin for the complex reverse zoned crys- tals is valid, we can utilize diffusion modelling (Costa et al., 2008; Zhang and Cherniak, 2010) of the chem- ical re-equilibration in the Fe-Mg profiles (e.g., Fig- ure 2d) to constrain the time frame within which the Brattaskjól complex reverse zoned olivines cooled af- ter the recharge event. We did this by using the fi- nite difference diffusion code of Kahl et al. (2015) that follows the procedures outlined in Costa and Chakraborty (2004) and Costa et al. (2008), with Fe-Mg inter-diffusion coefficients of Dohmen et al. (2007) and Dohmen and Chakrabortny (2007). As the pre-diffusion initial state in our model crystals, we as- sumed the measured Fo contents in olivine cores, and a variably thick (9–26µm) Fo85.4 mixing plateau for the olivine crystals (stippled lines in Figure 6). We only modelled the time of diffusive re-equilibration between the mixing plateau and olivine-core, not be- tween the mixing plateau and the outer crystal rim, because the outermost rims have likely been formed, at least partly, by crystallization from cooling and evolving host-magma after the magma recharge, not by solid-state diffusive re-equilibriation. Some late- stage crystallization in the outermost macrocryst rims is to be expected considering the crystalline ground- mass (Figure 1b) and as the macrocrysts are hosted by a comparatively slowly cooled lava. In diffusion modelling, we used a fO2 of FMQ+0.5, temperature of 1170◦C and pressure of 3.0 kbar, corresponding to the mean conditions of clinopyroxene crystallization in the Brattaskjól ankaramite (Figure 5). Varying the fO2 and pres- sure has only a minor effect on the model results (e.g., JÖKULL No. 69, 2019 95
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.