Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.01.2020, Qupperneq 5

Jökull - 01.01.2020, Qupperneq 5
Hannesdóttir et al. et al., 2012; Hannesdóttir et al., 2015a,b; Harning et al., 2016; Guðmundsson et al., 2017; Fernández- Fernández et al., 2017, 2019). The ongoing glacier retreat leads to the disintegration of large glaciers into smaller ice bodies, the formation of terminus lakes and increased debris cover. This is increasingly chal- lenging for glacier monitoring, for example the delin- eation of glacier boundaries and length-change mea- surements (e.g. Fischer et al., 2016; Paul and Bolch, 2019). Glaciers currently cover approximately 10% of Iceland. They are large freshwater reservoirs and con- tain the equivalent of ∼3400 km3 of water (Björnsson, 2009, 2017), corresponding to the precipitation in the entire country over ∼20 years (e.g. Crochet, 2007). The glaciers influence the hydrology of the country through the annual mass-balance cycle and changes in ice volume due to variations in the climate, with important implications for the hydropower industry and other water users. The glaciers are dynamic and highly responsive to changes in climate and have high annual mass-turnover rates (1.5–3.0 mwe a−1, Pálsson et al., 2012). Several of the larger ice caps and glaciers in Iceland cover active volcanic and geo- thermal zones, causing subglacial eruptions and fre- quent jökulhlaups (Guðmundsson and Larsen, 2013). They are affected by geothermal melting, which is a substantial component in the glacier mass balance (Björnsson et al., 2013; Jóhannesson et al., 2020), as they are located in areas of high geothermal heat flux, including the neovolcanic zone. This paper describes a national glacier outline in- ventory for Iceland for the period after the LIA maxi- mum in the late 19th century, which has been submit- ted to GLIMS (Global Land Ice Measurements from Space, nsidc.org/glims). Hitherto only the glacier outline from around the year 2000 has been avail- able in digital form at the international snow and ice database. The outlines were collected by several re- search groups and institutions and are described in more detail in other scientific papers. They have been reviewed and updated for consistency, and the most reliable or representative outline chosen, from several available outlines for the same glacier. This paper pro- vides general information about the glacier outlines, as well as a simple interpretation of the glacier vari- ations that they represent, but readers are referred to the original papers for more detailed information. The paper is not intended as a comprehensive review paper about post-LIA glacier variations in Iceland. Rather, it provides background information about the updated, multi-temporal GLIMS glacier variations data set for Iceland in order to make it more useful for other stud- ies of glacier variations and related research. STUDY AREA The largest ice caps in Iceland are located in the south- ern and central highlands (Figure 1), where prevail- ing southerly winds deliver a large amount of pre- cipitation, on average 4000–5000 mm a−1 in the up- per accumulation area of Vatnajökull and Mýrdals- jökull, reaching a maximum of ∼7000 mm a−1, and ca. half of that on Langjökull and Hofsjökull (Björns- son and Pálsson, 2008; Björnsson, 2009, 2017). The balanced-budget equilibrium line altitude (ELA) of Vatnajökull ice cap lies on average around 1000 m a.s.l. on the southern outlet glaciers, compared with 1350 m a.s.l. on the inland outlet glaciers (Pálsson et al., 2019). The balanced-budget ELAs of the ice caps in central Iceland are at ca. 1100–1300 m a.s.l. on Hofsjökull and 1000–1200 m a.s.l. on Langjök- ull (Thorsteinsson et al., 2017; Pálsson et al., 2012, respectively). The ELA of Mýrdalsjökull has been estimated from satellite images (from the location of the firn line) and is at ca. 1000 m a.s.l. on the east- and southeast-flowing glaciers vs. 1200 m a.s.l. on the inland and southern outlets (unpubl. data from the IMO). Typically, only 10–20% of the bed of the glaciers lies above the current ELA; thus, the larger ice caps exist mainly due to their own thickness (Björnsson and Pálsson, 2008). Several mountains reaching over 1400 m a.s.l. maintain small glaciers in the central highlands. A few ice-capped volcanoes ex- ist outside the neovolcanic zone, including Snæfells- jökull and Mt. Snæfell. Drangajökull in Vestfirðir, the fifth largest ice cap, has the lowest ELA (600–700 m a.s.l.) of glaciers in Iceland (Björnsson, 2009, 2017). An overview of the ice caps and glaciers analysed in this paper is found in Table 1, including the elevation range and the area span in ∼1890–2019. 2 JÖKULL No. 70, 2020
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.