Jökull


Jökull - 01.12.1991, Síða 40

Jökull - 01.12.1991, Síða 40
(Þórarinsson, 1955). The thickness of the winter accumulation was of the order of 4 m, suggesting that the layer was dispersed over the area in mid winter. Fresh ash layers within Grímsvötn have a black colour when observed in snowpits and crevasses. Hence, the brown colour indicates that the layer was created when fragments of hyaloclastite tuffs where dispersed by a steam explosion. SHORTINTERVALS BETWEEN JÖKULHLA UPS The unusually short time interval between the jökul- hlaups of 1939, 1941, 1945 and 1948 has been cited as indirect evidence for eruptions in the Grímsvötn area (Jóhannesson, 1983; 1984; Grönvold and Jóhannesson, 1984). As far as we are aware, no observations were made in Grímsvötn in 1939. During the jökulhlaup in 1941, however, Grímsvötn were inspected from air by P. Hannesson (Þórarins- son, 1974). He recorded no unusual activity in Grímsvötn, only crevasses around the periphery of the depression indicating that the central ice shelf was subsiding. The jökulhlaup in 1948 reached a maximum on February 23 about a month after its start. On the morning of February 20 a fallout of gray-brown ash was recorded on a fishing boat off the SE coast, about 120 km to the SE of Grímsvötn but ash was not detected elsewhere (Þórarinsson, 1974). Grímsvötn were inspected from the air on February 22, 1948, (Figs. 13b, c) but no signs of vol- canic activity were observed (Þórarinsson, 1974). Whatever the nature of the gray-brown ash detected off the SE coast, its origin was not in Grímsvötn. Björnsson, (1988, p. 84), however, suggested that increased geothermal activity following the eruption of 1938 caused the frequent jökulhlaups in the 1940’s. Effects ofthe 1938 eruption on jökulhlaup frequency The main volcanic event in Grímsvötn since 1934 was the fissure eruption in 1938 and the high fre- quency of jökulhlaups in the period 1938-1948 may be explained by melting of ice at the emption site. The volume of the ridge created in the eruption is of the order of 0.4 km3 and assuming that it is made of hyaloclastites, its mean density may be close to 2000 kg/m3 which puts the total mass of the erupted mate- rial to 8.0- 10n kg. The maximum amount of melting during the eruption would occur if all the magma were quenched as basaltic glass. The heat released during the eruption would then be given by E=mC(T0-T!) where m is the total mass of the empt- ed material, C is the specific heat capacity of the glass, T0 is the initial temperature of the magma and T, is the ambient temperature at the eruption site (Tj=0°C). By using T0=l 150°C (typical for tholeiitic magma, Williams and McBimey, 1979) and C=1000 J/kg°C (Allen, 1980), the total heat released would be 9.2- 1017 J. Using the latent heat of fusion for water, Lw=3.35-105 J/kg, the total mass of ice melted during the eruption is 2.7-1012 kg or 2.7 km3 of water, which is similar to the volume of the depression formed in the glacier surface in 1938 (Fig. 9). If pil- lows make up a significant part of the rock volume the rate of melting during the emption would be somewhat less as the heat would be released over a longer period of time. The quenching of the magma and the formation of glass results in the latent heat of fusion of the magma not being released upon cooling but gradually during the alteration of the glass to palagonite. According to experience from Surtsey, the palagonitization was well advanced in a large fraction of the rock volume 12 years after the eruption that formed the hyalo- clastites (Jakobsson and Moore, 1982). Steinþórsson and Oskarsson (1986) estimated that the heat released during palagonitization of basaltic glass is about 4.2- 105 J/kg. Thus, the total energy released in the palagonitization of a mass of 8.0-1011 kg is 3.4-1017 J which would melt 1.0-1012 kg of ice which is equiva- lent to a water volume of 1.0 km3. The total volume of meltwater would therefore be 2.7+1.0 km3 = 3.7 km3. Crystallization and cooling of the feeder dyke will also cause melting. For example, a feeder that is 2 km high, 8 km long and 2 m wide (i.e. 0.032 km3) would give away heat that melts about 0.4 km3 of water. The total volume of water melted gradually over several years is therefore of the order of 1.4 km3. The meltwater formed above the ridge after the eruption of 1938 either drained continuously to 38 JÖKULL, No. 41, 1991
Síða 1
Síða 2
Síða 3
Síða 4
Síða 5
Síða 6
Síða 7
Síða 8
Síða 9
Síða 10
Síða 11
Síða 12
Síða 13
Síða 14
Síða 15
Síða 16
Síða 17
Síða 18
Síða 19
Síða 20
Síða 21
Síða 22
Síða 23
Síða 24
Síða 25
Síða 26
Síða 27
Síða 28
Síða 29
Síða 30
Síða 31
Síða 32
Síða 33
Síða 34
Síða 35
Síða 36
Síða 37
Síða 38
Síða 39
Síða 40
Síða 41
Síða 42
Síða 43
Síða 44
Síða 45
Síða 46
Síða 47
Síða 48
Síða 49
Síða 50
Síða 51
Síða 52
Síða 53
Síða 54
Síða 55
Síða 56
Síða 57
Síða 58
Síða 59
Síða 60
Síða 61
Síða 62
Síða 63
Síða 64
Síða 65
Síða 66
Síða 67
Síða 68
Síða 69
Síða 70
Síða 71
Síða 72
Síða 73
Síða 74
Síða 75
Síða 76
Síða 77
Síða 78
Síða 79
Síða 80
Síða 81
Síða 82
Síða 83
Síða 84
Síða 85
Síða 86
Síða 87
Síða 88
Síða 89
Síða 90
Síða 91
Síða 92
Síða 93
Síða 94
Síða 95
Síða 96
Síða 97
Síða 98
Síða 99
Síða 100
Síða 101
Síða 102
Síða 103
Síða 104
Síða 105
Síða 106
Síða 107
Síða 108
Síða 109
Síða 110
Síða 111
Síða 112
Síða 113
Síða 114
Síða 115
Síða 116

x

Jökull

Beinleiðis leinki

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.