Jökull


Jökull - 01.12.1966, Blaðsíða 22

Jökull - 01.12.1966, Blaðsíða 22
The present paper will discuss the problems of the superadiabatic lapse rates and convec- tive motions from a point of view which differs slightly from that of Lee and Cox (1966). Since very little is at present known about turbulence in the oceans, the following discussion will necessarily be of a very incomplete and tenta- tive character. (2) FREE AND FORCED CONVECTION The criterion (Jeffreys, 1926) for the onset of free convection in a stationary horizontal layer of a homogeneous fluid, which is being heated from below, is given by the value of the Rayleigh number R. The layer is unstable if R = agyh4/ua > C. (1) where a is the coefficient of thermal expansion, g the acceleration of gravity, y the vertical tem- perature lapse rate at the onset of convection, h the thickness of the layer, v the kinematic viscosity, a the thermal diffusivity and C a crtitical number depending on the boundary conditions. For a layer with a free surface and a rigid bottom the critical number is 1100. The model is based on a constant temperature lapse rate at the onset of convection, that is, on the assumption of a very slow heating of the layer. In the case of a compressible fluid, y represents the effective rate, that is the lapse rate of the potential temperature. The Rayleigh number may also be expressed in terms of a given upward heat flow q, R = «g(q-q0)h4/rak’ (2) where q0 is the heat flow caused by the adia- batic lapse rate and k is the thermal conduc- tivity. The global average of the terrestrial heat flow of 0.06 watts/m2 gives a lapse rate of 0.1 °C/m in stationary sea water. If values for sea water are inserted for the other parameters in (1) we find that this gradient and C = 1100 give a marginal thickness of around 0.05 m. In view of the fourth power of the thickness in (1) it is obvious that any stationary layer of water which is permeated by the terrestrial heat flow will be highly unstable, even if the thickness is only a few meters. For example, the critical temperature lapse rate in a layer of thickness of 5 m will be 10~9 °C/m, and under the influence of the terrestrial heat flow its Rayleigh number will exceed the critical value by a factor of 108. Such highly unstable layers develop convective motion on a very fine scale. The temperature at all levels deviates only little from the adiabatic temperature. This result holds for stationary layers where a cell-type convection develops when R > C. Jeffreys (1928) has shown that the condition of stationarity can be relaxed, and that the above criterion (1) also holds in the case where a steady laminar current passes through the layer, provided all quantities involved are indepen- dent of the coordinate in the direction of the current. The free convection will then occur in strips parallel to the steady current. In the case of oceanic currents, the condition of in- dependence of the coordinate in the direction of flow will in general not be satisfied. But the deviations are probably so small that Jef- frey's result will be applicable in most cases of interest. The condition of laminarity is essential. The eddy viscosity and eddy conductivity of turbu- lent currents generally exceed the correspond- ing molecular quantities by several orders of magnitude. Moreover, the eddy transport is strongly anisotropic. Whereas the molecular dif- fusivity of heat in sea water is 0.14 x 10~6 m2/sec, Sverdrup (1957) gives for the vertical eddy diffusivity values of 2 X 10-6 to 10-2 m2/sec and for the horizontal eddy cliffusivity an even wider range of 10-1 to 104 m2/sec. The effective Rayleigh number therefore ap- pears to be radically affected by the turbulence, resulting in an enhanced stability against free convection. However it must be emphasized that this conclusion is necessarily a qualitative one. The eddy transport phenomena are only poorly known and the eddy transport coeffic- ients are not well defined quantities since they depend even on the scale of the turbulnce. It is therefore not possible to arrive at a stability criterion for turbulent fluid layers by applying eddy transport coefficients to the criterion given in (!)• The eddy transport of heat is of a dynamical origin and is referred to as forced convection in contrast to the above discussed case of free convection where the convection motion is caused by the buoyant forces. The distinction between the regimes of forced and free convec- tion is important. A fluid layer where forced 176 JÖKULL
Blaðsíða 1
Blaðsíða 2
Blaðsíða 3
Blaðsíða 4
Blaðsíða 5
Blaðsíða 6
Blaðsíða 7
Blaðsíða 8
Blaðsíða 9
Blaðsíða 10
Blaðsíða 11
Blaðsíða 12
Blaðsíða 13
Blaðsíða 14
Blaðsíða 15
Blaðsíða 16
Blaðsíða 17
Blaðsíða 18
Blaðsíða 19
Blaðsíða 20
Blaðsíða 21
Blaðsíða 22
Blaðsíða 23
Blaðsíða 24
Blaðsíða 25
Blaðsíða 26
Blaðsíða 27
Blaðsíða 28
Blaðsíða 29
Blaðsíða 30
Blaðsíða 31
Blaðsíða 32
Blaðsíða 33
Blaðsíða 34
Blaðsíða 35
Blaðsíða 36
Blaðsíða 37
Blaðsíða 38
Blaðsíða 39
Blaðsíða 40
Blaðsíða 41
Blaðsíða 42
Blaðsíða 43
Blaðsíða 44
Blaðsíða 45
Blaðsíða 46
Blaðsíða 47
Blaðsíða 48
Blaðsíða 49
Blaðsíða 50
Blaðsíða 51
Blaðsíða 52
Blaðsíða 53
Blaðsíða 54
Blaðsíða 55
Blaðsíða 56
Blaðsíða 57
Blaðsíða 58
Blaðsíða 59
Blaðsíða 60
Blaðsíða 61
Blaðsíða 62
Blaðsíða 63
Blaðsíða 64
Blaðsíða 65
Blaðsíða 66
Blaðsíða 67
Blaðsíða 68
Blaðsíða 69
Blaðsíða 70
Blaðsíða 71
Blaðsíða 72
Blaðsíða 73
Blaðsíða 74
Blaðsíða 75
Blaðsíða 76
Blaðsíða 77
Blaðsíða 78
Blaðsíða 79
Blaðsíða 80
Blaðsíða 81
Blaðsíða 82
Blaðsíða 83
Blaðsíða 84

x

Jökull

Beinir tenglar

Ef þú vilt tengja á þennan titil, vinsamlegast notaðu þessa tengla:

Tengja á þennan titil: Jökull
https://timarit.is/publication/1155

Tengja á þetta tölublað:

Tengja á þessa síðu:

Tengja á þessa grein:

Vinsamlegast ekki tengja beint á myndir eða PDF skjöl á Tímarit.is þar sem slíkar slóðir geta breyst án fyrirvara. Notið slóðirnar hér fyrir ofan til að tengja á vefinn.