Jökull


Jökull - 01.12.1966, Blaðsíða 27

Jökull - 01.12.1966, Blaðsíða 27
higher velocities in the Atlantic, and may pos- sibly indicate a significant difference between the two oceans. Very little is known about the vertical varia- tion of the eddy diffusivity az in the ocean. There is no doubt that the behavior of this quantity is quite complex, and it will depend heavily on the local stability of the water masses. On the other hand, it is not inconceivable that there is a certain resemblance with the eddy diffusivity in the lower atmosphere. It is well known that the eddy diffusivitv of the lower atmosphere increases with the height over the ground and it appears to reach a maximum at heights of the order of a few hundred meters. The values found in the lowest part of the surface boundary layer are generally substanti- ally lower than the values at a higher level. A similar behavior of the diffusivity in the deep oceanic currents would imply relatively low values in the bottom boundary layer. As a matter of fact, this trend seems to be indicated bv the relatively low value of the estimate given above for the lowest section of the Pacific deep current. Hence, if the average for the deep Pacific current is az = 10~4 m2/sec., the values in the lowest section may be one or two orders of magnitude smaller. The thickness of this low diffusivity layer cannot be inferred on the basis of the above data, but it is of interest to point out that Koczy (1950) has on the basis of chemi- cal investigations of samples taken from the bottom boundary layer in the Atlantic come to the conclusion that there is a boundary layer of 20 to 50 m with an apparently very low dif- fusivity. Although the speculative character of these results has to be underlined, it is rather evident that they appear to be consistent with the superadiabatic lapse rates which Lubimova et al. (1965) claim to have observed in the bottom boundary layer in some locations in the deep Pacific. Based on the similarity theory of Monin and Obukhov, Lee and Cox (1966) have computed a typical boundary layer profile of the mean horizontal velocity ú(z) ancl potential tempera- ture 0(z) for a current with a main velocity of u = 10-2 m/sec. Their results implv a rela- tively very thin boundarv layer with rather high values of the eddv diffusivity. At elevations of z = 1 and 10 m values of az = 2 X 10~5 and and 1.5 x 10-4 m2/sec., respectively, are im- plied. On the basis of their temperature data, Lee and Cox (1966) question the validity of the observations of Lubimova et al. (1965) They claim that the observed superadiabatic lapse rates are unlikely to exist for much over 1 m above the sea floor, unless there is a stabilizing density gradient. At least as far as the Pacific Ocean is concerned, this view is not supported by the present investigation. (5) HEAT FLOW ANOMALIES AND THE TEMPERATURE ABOVE THE OCEAN FLOOR The above considerations appear to indicate a rather interesting possibility as to the detec- tion of terrestrial heat flow anomalies on the basis of their influence on the temperature of the water just above the ocean floor. The data given by Knauss (1962) indicate that the terrestrial heat flow raises the tem- perature of the bottom current in the Pacific by about 0.1° C along the initial 1,800 km of flow. If this interpretation is correct, then we may, on the basis of equation (10), infer that an anomalous temperature rise of 0.02° C would be obtained when the current flows across an elongated heat flow anomaly of 100 km width and having an excess heat flow of 0.06 watts/m2. Hence, it appears possible that relatively small areas of anomalous terrestrial heat flow may have a noticeable effect on the tempera- ture of the bottom water. As stated above, Knauss (1962) has already pointed out that an anomaly of this kind appears to exist in the neighborhood of the East Pacific Rise. An accurate study of the spatial variations of the bottom temperature of the deep oceans may therefore be of value for the detection of local heat flow anomalies. As a matter of course, the instrumental precision has to be quite great, and interpretational difficulties will, no doubt, be encountered in areas of uneven topography and complex currents. But an attempt in this direction appears worthwhile. (6) TEMPERATURE FLUCTUATIONS AT THE OCEAN FLOOR It is possible to list a number of phenomena that could cause temperature fluctuations at the floor of the deep oceans. These factors JÖKULL 181
Blaðsíða 1
Blaðsíða 2
Blaðsíða 3
Blaðsíða 4
Blaðsíða 5
Blaðsíða 6
Blaðsíða 7
Blaðsíða 8
Blaðsíða 9
Blaðsíða 10
Blaðsíða 11
Blaðsíða 12
Blaðsíða 13
Blaðsíða 14
Blaðsíða 15
Blaðsíða 16
Blaðsíða 17
Blaðsíða 18
Blaðsíða 19
Blaðsíða 20
Blaðsíða 21
Blaðsíða 22
Blaðsíða 23
Blaðsíða 24
Blaðsíða 25
Blaðsíða 26
Blaðsíða 27
Blaðsíða 28
Blaðsíða 29
Blaðsíða 30
Blaðsíða 31
Blaðsíða 32
Blaðsíða 33
Blaðsíða 34
Blaðsíða 35
Blaðsíða 36
Blaðsíða 37
Blaðsíða 38
Blaðsíða 39
Blaðsíða 40
Blaðsíða 41
Blaðsíða 42
Blaðsíða 43
Blaðsíða 44
Blaðsíða 45
Blaðsíða 46
Blaðsíða 47
Blaðsíða 48
Blaðsíða 49
Blaðsíða 50
Blaðsíða 51
Blaðsíða 52
Blaðsíða 53
Blaðsíða 54
Blaðsíða 55
Blaðsíða 56
Blaðsíða 57
Blaðsíða 58
Blaðsíða 59
Blaðsíða 60
Blaðsíða 61
Blaðsíða 62
Blaðsíða 63
Blaðsíða 64
Blaðsíða 65
Blaðsíða 66
Blaðsíða 67
Blaðsíða 68
Blaðsíða 69
Blaðsíða 70
Blaðsíða 71
Blaðsíða 72
Blaðsíða 73
Blaðsíða 74
Blaðsíða 75
Blaðsíða 76
Blaðsíða 77
Blaðsíða 78
Blaðsíða 79
Blaðsíða 80
Blaðsíða 81
Blaðsíða 82
Blaðsíða 83
Blaðsíða 84

x

Jökull

Beinir tenglar

Ef þú vilt tengja á þennan titil, vinsamlegast notaðu þessa tengla:

Tengja á þennan titil: Jökull
https://timarit.is/publication/1155

Tengja á þetta tölublað:

Tengja á þessa síðu:

Tengja á þessa grein:

Vinsamlegast ekki tengja beint á myndir eða PDF skjöl á Tímarit.is þar sem slíkar slóðir geta breyst án fyrirvara. Notið slóðirnar hér fyrir ofan til að tengja á vefinn.