Jökull - 01.12.1966, Blaðsíða 44
gratefully the sponsorship of the State Electri-
cit.y Authority.
The authors also acknoiuledge gratefully the
assistance given by Mr. Keh-Gojig Shih in the
computation work which tuas parlially support-
ed by the U. S. Office of Naval Research under
contract Nonr 1286(10).
REFERENCES
Grange, L. I. 1955. N. Z. Dept. of Scientific and
Industrial Reasearch, Bulletin, 117.
Belin, R. E. and Knox, F. B. 1955. N. Z. Jl. Sci.
and Tech. Vol. 37, 3, p. 385, “The Estima-
tion of the Distribution and Quantity of
Water in Two-Phase Steam Water Systems.”
Belin, R. E. and Bainbridge, A. E. 1957. Proc.
I. Mech. E. Vol. 171, p. 967, “Estimation
of Dryness Fraction and Mass Discharge of
Geothermal Bores.”
Banwell, C. J. 1957. Trans. A.S.M.E. Vol. 79,
p. 269, “Flow Sampling and Discharge Mea-
surement in Geothermal Bores.”
Ryley, D. J. 1964. Int. Jl. Mech. Sci. Vol. 6, p.
273, “Two Phase Critical Flow in Geo-
thermal Steanr Wells.” (Appendix).
Kozlov, B. K. 1954. Zhurnal Teknicheskoi
Fiziki, Vol. 24, p. 2285, “Forms of Flow
of Gas-Liquid Mixtures and their Stability
Limits in Vertical Tubes.”
Baker, O. 1954. Oil Gas J. Vol. 53, 12, p. 185,
“Simultaneous Flow of Oil and Gas.”
Smith, J. H. 1958. N. Z. Engng. 13, 354, “Pro-
duction and Utilisation of Geothermal
Steam.”
James, R. 1962. Proc. I. Mech. E. Vol. 176, 26,
p. 741, “Steam-Water Critical Flow through
Pipes.”
Isbin, H. S., Moy, J. E. and da Cruz, A. J. R.
1957. Jl. A.I. Chenr. E„ Vol. 3, 3, p. 361,
“Two Phase, Steam-Water Critical Flow.”
Linning, D. L. 1952/3. Proc. I. Mech. E. IB,
64—75, “The Adiabatic Flow of Evaporat-
ing Fluids in Pipes of Uniform Bore.”
Martinelli, R. O. and Lockhart, R. W. 1949.
Chem. Eng. Prog. 45, p. 39, “Proposed Cor-
relation of Data for Isothermal Two-Phase,
Two-component Flow in Pipes.”
Fauske, H. K. 1962. Thesis University of Chi-
cago ANL - 6633, “Contribution to the
Theory of Two-Phase, One-Component
Critical Flow.”
Cruver, J. E. 1963. Thesis, University of Wash-
ington, “Metastable Critical Flow of Steam-
Water Mixtures.”
NOTATION
pipe diameter
pressure
specific enthalpy
latent heat of vaporization
specific volume
mass flow dryness fraction
velocity
density
flow area
mass flux
mass flow (total)
mass flow (vapour)
mass flow (liquid)
void fraction
length along duct
slip ratio
specific entropy
Froude number
specific kinetic energy
energy conversion efficiency
in expansion
factor defined in equation (25)
factor defined in equation (30)
flow coefficient defined in equa-
tion (34)
factors defined in equation (35)
gravitational constant
Newtonian constant
Joule’s equivalent
specific heat
expansion exponent
SUBSCRIPTS
f saturated liquid
g saturated vapour
o reservoir condition
1 initial condition
2 final condition
p polytropic
c critical
m equilibrium mixture
v based on volumetric flow
See also additional notation in Fig. 3
D
P
h
r
v
x
V
e
A
w
G
G'
L
Rg
1
K = Vg/Vf
S
Fr
E
e
a
b
cp
s, t
g
go
J
c
n
198 JÖKULL