Jökull


Jökull - 01.12.1966, Blaðsíða 48

Jökull - 01.12.1966, Blaðsíða 48
k = heat conductivity of the rock c = specific heat of the rock e = density of the rock t = time since the opening of the contact q = total amount of hot water produced per unit area of the contact during the time t s = specific heat of the water. The interesting fact about this result is that the quantity u is proportional to the ratio \/ t/q. That is, the total amont of thermal water which can be produced per unit area, in a given temperature interval, is proportional to the square root of the time since the produc- tion was initiated. For example, let us consider a system of this kind with a rock temperature of T0 = 100° C and a total flow rate of one Mton/year* which can produte a total of 10 Mton in 10 years before the outlet tem- perature drops below 80° C. The above result indicates. that at a production rate of V2 Mton/ year the same system could produce a total of 20 Mton of thermal water in the period of 40 years before the temperature drops below the 80° C level. Thus, the half rate leads to the double total production. We have here the first indication that the total useful life of a geothermal system may depend substantially on the rate of produc- tion, and that an optimum production rate may exist. The unfortunate fact is that it appears very difficult to obtain sufficient data to derive the optimum rate. This question will be discussed below. (2.3) The hydrological conditions. Water is the heat carrier in all geothermal systems, and an adequate flow niust be available in order to make an exploitation possible. In fact, the maximum total available flow of water from boreholes limits the power that can be drawn from a geothermal area. The hydrological con- ditions are, therefore, of primary importance. In order to give a quantitative idea about the flows involved, we can state that the total output of the boreholes connected to the Reykjavik district heating system is of the order of 15 Mton/year at an average tempera- ture of 115° C. The boreholes at Wairakei, New Zealand, have a total output of the order *) one Mton = 108 tons. 202 JÖKULL of 50 Mton/year of water at 250° C. Of course, a part of this water flashes to steam in the boreholes. The problems encountered in geothermal areas are quite similar to those encountered in ground-water hydrology in general, although there may be additional complications in high- temperature areas due to two-phase flow, that is, the flow of steam-water mixtures. However, the steam phase is usually present only in a relatively shallow zone and the heat carrier is probably in its liquid state throughout most of the hydrothermal systems. Unfortunately very little is known about the hydrology of the hydrothermal systems. In many ways this is the most discouraging fact in geo- thermal engineering. Until very recently the only available set of hydrological data was de- rived on the basis of the pressure-flow charac- teristics of boreholes. But in most cases the test periods are very short, and it is no secret that geothermal plants have been built rather on faith in good luck than on the results of a comprehensive test program. A well producing at a constant rate and constant temperature for a period of a few months is generally re- garded as good enough. Of course, the basis of this procedure is that geothermal plants in general are so economically healthy that even a very short useful life can be tolerated. More- over, experience lias shown that the constancy of sorne geothermal wells is quite remarkable. There appears no doubt that the hydrological systems involved are very extensive. But it is very much desirable to obtain more reliable data on the structure of the systems. Progress can be achieved on the basis of more comprehensive hydrological work, and also through a better evaluation of the well-test data. A few words will be devoted to the latter subject. The subsurface hydrological network consists of capacitors and resistors. In general we are confronted with distributed parameters, but we may in the first approximation use the methods which electrical engineers have used with great success for a long time. We can approximate the real systems by lumped parameter models and try to derive the the parameters that best fit the observed data. The simplest lumped model is the chain of capacitors and resistors shown in Fig 3 below.
Blaðsíða 1
Blaðsíða 2
Blaðsíða 3
Blaðsíða 4
Blaðsíða 5
Blaðsíða 6
Blaðsíða 7
Blaðsíða 8
Blaðsíða 9
Blaðsíða 10
Blaðsíða 11
Blaðsíða 12
Blaðsíða 13
Blaðsíða 14
Blaðsíða 15
Blaðsíða 16
Blaðsíða 17
Blaðsíða 18
Blaðsíða 19
Blaðsíða 20
Blaðsíða 21
Blaðsíða 22
Blaðsíða 23
Blaðsíða 24
Blaðsíða 25
Blaðsíða 26
Blaðsíða 27
Blaðsíða 28
Blaðsíða 29
Blaðsíða 30
Blaðsíða 31
Blaðsíða 32
Blaðsíða 33
Blaðsíða 34
Blaðsíða 35
Blaðsíða 36
Blaðsíða 37
Blaðsíða 38
Blaðsíða 39
Blaðsíða 40
Blaðsíða 41
Blaðsíða 42
Blaðsíða 43
Blaðsíða 44
Blaðsíða 45
Blaðsíða 46
Blaðsíða 47
Blaðsíða 48
Blaðsíða 49
Blaðsíða 50
Blaðsíða 51
Blaðsíða 52
Blaðsíða 53
Blaðsíða 54
Blaðsíða 55
Blaðsíða 56
Blaðsíða 57
Blaðsíða 58
Blaðsíða 59
Blaðsíða 60
Blaðsíða 61
Blaðsíða 62
Blaðsíða 63
Blaðsíða 64
Blaðsíða 65
Blaðsíða 66
Blaðsíða 67
Blaðsíða 68
Blaðsíða 69
Blaðsíða 70
Blaðsíða 71
Blaðsíða 72
Blaðsíða 73
Blaðsíða 74
Blaðsíða 75
Blaðsíða 76
Blaðsíða 77
Blaðsíða 78
Blaðsíða 79
Blaðsíða 80
Blaðsíða 81
Blaðsíða 82
Blaðsíða 83
Blaðsíða 84

x

Jökull

Beinir tenglar

Ef þú vilt tengja á þennan titil, vinsamlegast notaðu þessa tengla:

Tengja á þennan titil: Jökull
https://timarit.is/publication/1155

Tengja á þetta tölublað:

Tengja á þessa síðu:

Tengja á þessa grein:

Vinsamlegast ekki tengja beint á myndir eða PDF skjöl á Tímarit.is þar sem slíkar slóðir geta breyst án fyrirvara. Notið slóðirnar hér fyrir ofan til að tengja á vefinn.