Jökull


Jökull - 01.12.1966, Blaðsíða 25

Jökull - 01.12.1966, Blaðsíða 25
condition depends on the velocity profile as well as on the efficiency of the vertical heat transport, and hence on the regime of flow and on the vertical eddy diffusivity in the boundary layer. Molecular conduction of heat is of neglig- ible importance since oceanic currents are generally turbulent. At this juncture, there are no criteria avail- able for the determination of the regime of flow in the bottom boundary layer. Priestley’s criterion, discussed above, which indicates the transition between the regimes of fully forced and dominantly free convection in the boundary layer of the atmosphere, refers to conditions at a specific level. It can therefore not be applied quantitatively to the boundary layer in the oceans. We can only draw the cjualitative con- clusion that a similar transition may occur at a certain level in the bottom boundarv layer when the negative Richarclson number at this level exceeds an unknown critical value. The situation in the oceans is complicated bv the limited vertical extension of the deep water Iayer which is affected by the terrestrial heat flow. Moreover, tides and internal motions cause a considerable oscillatory unrest. This situation is aggravated by the fact that the velocitv of these oscillatorv motions mav locally be orders of magnitude larger than the average velocity of the global deep currents. For ex- ample, recent studies by Isaacs et al. (1966) of the local flow conditions above the bottom in the deep Pacific west of the northern Baja California Coast indicate both local net velo- cities and semidiurnal fluctuation of the order of 2 X 10 —2 m/sec. This is more than one order of magnitude larger than the average northward velocity of the deep Pacific current. The tendency of the boundary layer to build up superadiabatic temperature lapse rates is no doubt dependent on the anisotropy of the tur- bulence. This follows from the fact that the stability against free convection is enhanced by both the vertical as well as the horizontal eddy diffusivities, whereas the magnitude of the lapse rate is inversely proportional to the verti- cal eddy diffusivity. A high ratio of the hori- zontal to the vertical diffusivitv is therefore favorable. We will now investigate the magnitude of the vertical eddy diffusivity implied by the super- adiabatic lapse rates reportecl by Lubimova et al. (1965) as well as by Bodvarsson et al. (1967) and compare the results with other estimates. On the basis of an average terrestrial heat flow of 0.06 watts/m2, the lapse rates of 10 to 10-2 °C/m correspond to a vertical eddy cliffusivity az = q/scy = 1.5xl0“6 to 1.5xl0-4 m2/sec. These values fall within the lower part of the range given by Sverdrup (1957). An order-of-magnitude estimate of the aver- age vertical eddv diffusivity in the upper séc- tion of the Pacific deep current can probably be obtained on the basis of the global changes of the temperature and the salinity below 4,000 m on the passage to the North. The lower section of the current can be approximated as a very thin horizontal laver of a thickness h and moving with a constant uniform velocitv u in the direction of the x axis. For the present purpose we can assume that this layer is heated entirely by the vertical heat transport from above. If yz is the gradient of the potential temperature at the top of the layer, and yt is the temperature gradient along the x axis, the following relation, az yz = uhVx> (!2) can be applied in order to estimate az. The same relation will hold for the salinitv changes provided the gradients are interpreted as salinity gradients. It is to be emphasized that the simple model on which equation (12) is based disre- gards the effect of the slow upwelling of deep water which is known to take place in the North Pacific. This difficulty can probably be largely avoided by restricting the model to the conditions in the South Pacific. However, the order of magnitude of the above estimate is apparently not affected. The data diven by Knauss (1962) indicate that the average potential gradient between the depths of 3,500 and 4,500 m is of the order of = 3 x 10-4 °C/m, and as already stated t.he average horizontal gradient is yx = 5 x 10-8 °C/m. The thickness of the layer heated from above is of the order of h = 103 m and the average northward velocity is u = 10 -3 m/sec. These values give on the basis of equation (12) a vertical eddy diffusivity of az = 1.7 X 10-4 m2/sec. According to Knauss (1962), the salinity of the Pacific deep current is changed by a total of —0.025 kg/m3 over a distance of 12,000 km. JÖKULL 179
Blaðsíða 1
Blaðsíða 2
Blaðsíða 3
Blaðsíða 4
Blaðsíða 5
Blaðsíða 6
Blaðsíða 7
Blaðsíða 8
Blaðsíða 9
Blaðsíða 10
Blaðsíða 11
Blaðsíða 12
Blaðsíða 13
Blaðsíða 14
Blaðsíða 15
Blaðsíða 16
Blaðsíða 17
Blaðsíða 18
Blaðsíða 19
Blaðsíða 20
Blaðsíða 21
Blaðsíða 22
Blaðsíða 23
Blaðsíða 24
Blaðsíða 25
Blaðsíða 26
Blaðsíða 27
Blaðsíða 28
Blaðsíða 29
Blaðsíða 30
Blaðsíða 31
Blaðsíða 32
Blaðsíða 33
Blaðsíða 34
Blaðsíða 35
Blaðsíða 36
Blaðsíða 37
Blaðsíða 38
Blaðsíða 39
Blaðsíða 40
Blaðsíða 41
Blaðsíða 42
Blaðsíða 43
Blaðsíða 44
Blaðsíða 45
Blaðsíða 46
Blaðsíða 47
Blaðsíða 48
Blaðsíða 49
Blaðsíða 50
Blaðsíða 51
Blaðsíða 52
Blaðsíða 53
Blaðsíða 54
Blaðsíða 55
Blaðsíða 56
Blaðsíða 57
Blaðsíða 58
Blaðsíða 59
Blaðsíða 60
Blaðsíða 61
Blaðsíða 62
Blaðsíða 63
Blaðsíða 64
Blaðsíða 65
Blaðsíða 66
Blaðsíða 67
Blaðsíða 68
Blaðsíða 69
Blaðsíða 70
Blaðsíða 71
Blaðsíða 72
Blaðsíða 73
Blaðsíða 74
Blaðsíða 75
Blaðsíða 76
Blaðsíða 77
Blaðsíða 78
Blaðsíða 79
Blaðsíða 80
Blaðsíða 81
Blaðsíða 82
Blaðsíða 83
Blaðsíða 84

x

Jökull

Beinir tenglar

Ef þú vilt tengja á þennan titil, vinsamlegast notaðu þessa tengla:

Tengja á þennan titil: Jökull
https://timarit.is/publication/1155

Tengja á þetta tölublað:

Tengja á þessa síðu:

Tengja á þessa grein:

Vinsamlegast ekki tengja beint á myndir eða PDF skjöl á Tímarit.is þar sem slíkar slóðir geta breyst án fyrirvara. Notið slóðirnar hér fyrir ofan til að tengja á vefinn.