Jökull


Jökull - 01.12.1966, Blaðsíða 28

Jökull - 01.12.1966, Blaðsíða 28
include (1) large scale temperature variations of climatic origin, (2) oscillatory motions due to internal and planetarv waves, (3) turbulence and other dynamic instabilities, (4) convective instabilities and (5) morphological factors such as turbidity currents and earthquakes. The climatic factors are beyond the scope of the present discussion. Lee and Cox (1966) have discussed the case of the oscillatory mo- tions and come to the conclusions that they may cause some minor temperature fluctuations at the sea floor. Temperature fluctuations due to turbulence and dynamic instabilities are very difficult to handle from the theoretical point of view. The scale of turbulence iii the oceans varies within wide limits. Small scale relatively high frequ- ency temperature fluctuations in the bottom boundary laver have a very small amplitude and are of no importance within the present context. The other end of the spectrum, that is, instabilities of current systems, are more interesting but very little is known about this subject. The possibilities for such fluctuations appear to be enhanced by the oscillatory un- rest in the oceans which is now more apparent on the basis of recent observations. However since the temperature environment at the floor of the deep oceans is laterally rather homo- geneous, it appears somewhat doubtful that these phenomena could cause fluctuations which could interfere greatly with the studies of the terrestrial heat flow through the ocean floor. But it should be emphasized that practically no experimental data are available on this subject. Due to the tliermal inertia of the bottom sediments, temperature fluctuations resulting from current instabilities would cause local transitory changes of the temperature lapse rate. Deviations of this nature can be both posi- tive ancl negative, and the quantitative aspects involved can possibly be investigated on the basis of the diffusion type models discussed in section (3). As to the convective instabilities, the discus- sion in section (2) appears to imply that, al- though superadiabatic temperature lapse rates of the order of 10-3 to 10-2 °C/m could possibly be built up at favorable conditions, such rates may be rather unstable. A change in the state of the turbulence could leacl to instabilities in the boundary layer and to the formation of “thermals”. Similar to the situa- tion in the atmosphere, “bubbles” of water could break away from the bottom and rise into the boundary layer. Temperature fluctua- tions ot the orcler of 10 ~2 °C could possiblv be caused by such “thermals”. On the other hand, their frequency may be such that they are of little practical importance for the heat flow studies. As a matter of course, at this juncture, this is purely speculative. The morphological factors are probably of little or no importance except in certain re- stricted active areas. However, it is to be realiz- ed that major earthquakes can cause consider- able local disturbances at the ocean floor. The uppermost section of the sediments becomes mixed with the bottom waters. The equalizing of the resulting temperature disturbance may possibly take years. A CKNO WLED GEMEN T This work was supported by the National Science Foundation under Grant GP-4642. The author is also indebted to various members of the Department of Oceanography, Oregon St.ate University, Corvallis, Oregon, for their helpful comments on t.he manuscript. REFEREN CES Bodvarsson, G., Berg, J. and Mesecar, R. 1967. Vertical temperature gradient and eddy dif- fusivity above the ocean floor in an area west of the coast of Oregon. J. Geophys. Res. 72: 2693-2694. Carslaw, H. S., and Jaeger, J. C. 1959. Conduc- tion of heat in solids, 2nd ed. Oxford Uni- versity Press, London. Isaacs, J. D., Reid, J. R. Jr., Schick, G. B. and Schwartzlose, R. A. 1966. Near bottom cur- rents measured in four kilometers depth off the Baja California coast. J. Geophys. Res. 71: 4297-4303. Jefíreys, Sir Harold. 1926. Tlie stability of a layer of fluid heated from below. Phil. Mag., 2, Ser. 7: 833-844. - 1928. Some causes of instability in fluicl motion. Proc. Royal Soc., London, Series A, 118: 152-208. 182 JÖKULL
Blaðsíða 1
Blaðsíða 2
Blaðsíða 3
Blaðsíða 4
Blaðsíða 5
Blaðsíða 6
Blaðsíða 7
Blaðsíða 8
Blaðsíða 9
Blaðsíða 10
Blaðsíða 11
Blaðsíða 12
Blaðsíða 13
Blaðsíða 14
Blaðsíða 15
Blaðsíða 16
Blaðsíða 17
Blaðsíða 18
Blaðsíða 19
Blaðsíða 20
Blaðsíða 21
Blaðsíða 22
Blaðsíða 23
Blaðsíða 24
Blaðsíða 25
Blaðsíða 26
Blaðsíða 27
Blaðsíða 28
Blaðsíða 29
Blaðsíða 30
Blaðsíða 31
Blaðsíða 32
Blaðsíða 33
Blaðsíða 34
Blaðsíða 35
Blaðsíða 36
Blaðsíða 37
Blaðsíða 38
Blaðsíða 39
Blaðsíða 40
Blaðsíða 41
Blaðsíða 42
Blaðsíða 43
Blaðsíða 44
Blaðsíða 45
Blaðsíða 46
Blaðsíða 47
Blaðsíða 48
Blaðsíða 49
Blaðsíða 50
Blaðsíða 51
Blaðsíða 52
Blaðsíða 53
Blaðsíða 54
Blaðsíða 55
Blaðsíða 56
Blaðsíða 57
Blaðsíða 58
Blaðsíða 59
Blaðsíða 60
Blaðsíða 61
Blaðsíða 62
Blaðsíða 63
Blaðsíða 64
Blaðsíða 65
Blaðsíða 66
Blaðsíða 67
Blaðsíða 68
Blaðsíða 69
Blaðsíða 70
Blaðsíða 71
Blaðsíða 72
Blaðsíða 73
Blaðsíða 74
Blaðsíða 75
Blaðsíða 76
Blaðsíða 77
Blaðsíða 78
Blaðsíða 79
Blaðsíða 80
Blaðsíða 81
Blaðsíða 82
Blaðsíða 83
Blaðsíða 84

x

Jökull

Beinir tenglar

Ef þú vilt tengja á þennan titil, vinsamlegast notaðu þessa tengla:

Tengja á þennan titil: Jökull
https://timarit.is/publication/1155

Tengja á þetta tölublað:

Tengja á þessa síðu:

Tengja á þessa grein:

Vinsamlegast ekki tengja beint á myndir eða PDF skjöl á Tímarit.is þar sem slíkar slóðir geta breyst án fyrirvara. Notið slóðirnar hér fyrir ofan til að tengja á vefinn.