Jökull


Jökull - 01.12.1975, Blaðsíða 19

Jökull - 01.12.1975, Blaðsíða 19
fused much deeper into the basaltic glass in the Icelandic rocks, mentioned above, than in- dicated by palagonite rims. In fact, an analysis of quite fresh and young basaltic glass (from Valahnúkur) gave 3.10 weight percent H2O+ and 3.60% H2O— (Einarsson, 1950), which can- not be anything but absorbed water that en- tirely permeated the glass fragments without causing any signs in thin section of palagonit- ization. As K/Ar is the only radiometric metliod sofar used on Icelandic rocks, mainly basalts, and as the potassium in basalts may reside largely in interstitial glass, cf. section 4, one may wonder how much of the argon has been washed out by permeating groundwater. A further reason for doubting seriously the retention of argon in interstitial glass, is given at the end of the next section. In the lower parts of the Icelandic Tertiary basalt plateau, the basaltic glass is practically entirely palagonitized, and zeolite zones indi- cate such a deep burial that the temperature must regionally have reached 100—200 °C. Very serious loss of argon from such rocks woulcl not be unexpected. (Cf. addition in Proof). 2. THE ZERO POINT IN K/Ar-DATING, AND ARGON EXCESS. About 80—85% of the terrestrial heat flow is estimated to be radioactive heat, and of this some 12—18% come from 40K, with correspond- ing production of 40Ar. It is a complicated question, what has become of the 40Ar that has been produced in this way within the earth through geological ages, especially in the upper- most 50—100 km or so. But at any rate it would be expected that magma contains some con- siderable amount of radiogenic argon when it is erupted. How is this argon lost, so that historic or postglacial extrusive basalts, say, seem not to contain it? For holocrystalline basalt lavas, the question does not seem to be particularly difficult. Dur- ing the crystallization, the argon will on the whole be left in interstitial spaces, and it is more than doubtful that it will go into the interstitial minute potassium feldspar (Dal- rymple and Lanphere, 1969, p. 181). But even if it did so, it would leak out very rapidly from such micron-size grains or lamellae, or from interstitial glass while this matter was still at a high temperature, cf. also end of this sec- tion. The argon must thus be expected to go as a free gas into the interstitial spaces, from which it will be washed by percolating water after the cooling of the lava. The washing out of the argon in this way, might take some years to hundreds of years at the outmost. An initial diffusion of the gas may also cause much of the loss, to establish the zero point of the radio- metric clock in this case. What would happen in a subaquatic extru- sion, can also be answerecl on the basis of data on retention of excess argon in deep to shallow sea extrusions. We refer in particular to Dal- rymple and Moore (1968), which we shall discuss in some detail. Pillows were obtained from depths down to 5000 m. There was a certain relation to water depth. Pillows which had formed at depths more than about 2000 m contained excess argon in a glassy crust of about 2 cm thickness, while deeper (in the pillows) the retained argon fell rather rapidly to zero. The retention in this crust appears not to be dependent on depth within the interval 5000 to about 2000 m. The retention in the outermost shell, 0—1 cm, was found to be (measured in age): 42.9 My (2590 m depth), 14.1 My (3420 m), 30.3 My (4680 m), and 19.5 My (5000 m). These four pillows come, naturally, from as many different eruptions ancl are, therefore, not easy to compare. But as far as the material goes, it does not indicate dependence of argon content on water depth in the deep sea, and this was to be expected, as will be made clear. On the other hand, there is tliis depth limit between retention and no (detected) retention at about 2000 m. This limit is easy to under- stand. It is due to the fact that the critical pressure for water is 222 bars, corresponding to the depth 2160 m in sea water. Above this depth limit, quenching is due to boiling, and especially in shallow water this leads to an extremely rapid formation of a very thin layer of glass, the temperature of which falls to and below the boiling point within a fraction of a second.*) This cool surface means that the further heat exchange between the pil- low and the water is relatively slow. As we go deeper into the sea, the boiling *) See footnote next page. JÖKULL 25. ÁR 1 7
Blaðsíða 1
Blaðsíða 2
Blaðsíða 3
Blaðsíða 4
Blaðsíða 5
Blaðsíða 6
Blaðsíða 7
Blaðsíða 8
Blaðsíða 9
Blaðsíða 10
Blaðsíða 11
Blaðsíða 12
Blaðsíða 13
Blaðsíða 14
Blaðsíða 15
Blaðsíða 16
Blaðsíða 17
Blaðsíða 18
Blaðsíða 19
Blaðsíða 20
Blaðsíða 21
Blaðsíða 22
Blaðsíða 23
Blaðsíða 24
Blaðsíða 25
Blaðsíða 26
Blaðsíða 27
Blaðsíða 28
Blaðsíða 29
Blaðsíða 30
Blaðsíða 31
Blaðsíða 32
Blaðsíða 33
Blaðsíða 34
Blaðsíða 35
Blaðsíða 36
Blaðsíða 37
Blaðsíða 38
Blaðsíða 39
Blaðsíða 40
Blaðsíða 41
Blaðsíða 42
Blaðsíða 43
Blaðsíða 44
Blaðsíða 45
Blaðsíða 46
Blaðsíða 47
Blaðsíða 48
Blaðsíða 49
Blaðsíða 50
Blaðsíða 51
Blaðsíða 52
Blaðsíða 53
Blaðsíða 54
Blaðsíða 55
Blaðsíða 56
Blaðsíða 57
Blaðsíða 58
Blaðsíða 59
Blaðsíða 60
Blaðsíða 61
Blaðsíða 62
Blaðsíða 63
Blaðsíða 64
Blaðsíða 65
Blaðsíða 66
Blaðsíða 67
Blaðsíða 68
Blaðsíða 69
Blaðsíða 70
Blaðsíða 71
Blaðsíða 72
Blaðsíða 73
Blaðsíða 74
Blaðsíða 75
Blaðsíða 76
Blaðsíða 77
Blaðsíða 78
Blaðsíða 79
Blaðsíða 80
Blaðsíða 81
Blaðsíða 82
Blaðsíða 83
Blaðsíða 84
Blaðsíða 85
Blaðsíða 86
Blaðsíða 87
Blaðsíða 88

x

Jökull

Beinir tenglar

Ef þú vilt tengja á þennan titil, vinsamlegast notaðu þessa tengla:

Tengja á þennan titil: Jökull
https://timarit.is/publication/1155

Tengja á þetta tölublað:

Tengja á þessa síðu:

Tengja á þessa grein:

Vinsamlegast ekki tengja beint á myndir eða PDF skjöl á Tímarit.is þar sem slíkar slóðir geta breyst án fyrirvara. Notið slóðirnar hér fyrir ofan til að tengja á vefinn.