Jökull


Jökull - 01.12.1975, Blaðsíða 8

Jökull - 01.12.1975, Blaðsíða 8
Subglacial water reseruoirs and their stability The geometry of the subglacial water re- servoirs has been discussed. The stability of the reservoirs will now be examined. Fig. 3 a shows a cross-section through a con- vex glacier surface. A reservoir is situated be- neath a dome. The flow of water along the glacier bed depends on the potential cpb in Equation (1). The potential cpb attains a max- imum at the centre of the reservoir. If the glacier is permeable, the water flow in the cross-section can be described by the potential distribution cp (x, z, t) = constant. The equi- potential curve cp = 0 lies above the bed along tlie entire cross-section. A water divide is locat- ed beneath the crest of the dome. Meltwater is continually drained outwards from the dome. Water flows out from the reservoir at the same rate as into it. The reservoir remains constant in size and no jökulhlaups are to be expected. Oswald and Robin (1973) reported evidence for reservoirs of this type beneath the Antarctic Ice Sheet. Detailed mapping of glacier bed topo- graphy may reveal such reservoirs beneath gla- ciers in Iceland. Small reservoirs may be situat- ed in volcanic craters such as Öræfajökull, Eyja- fjallajökull and Snæfellsjökull, and in calderas like those observed on ERTS images at Kverk- fjöll and in Mýrdalsjökull. One might look for reservoirs in the central parts of Langjökull and Hofsjökull. The only possible site in the central part of Vatnajökull appears to be be- neath the saddle 20—30 km east of Grímsvötn, see Fig. 1 and a map of surface contours in Björnsson (1974). Consider next the growth of a reservoir be- neath a depression. Fig. 3b shows a cross-section through a concave glacier surface. The glacier bed is taken as a plane. The potential qjb at- tains a minimum beneath the depression and a maximum at the point C. The maximum for cpb defines a watershed at the point C. Water will flow along the bed towards the minimum of (pb and accumulate beneath the depression. Water flows towards tliat point. A dome shaped water reservoir rises like a cupola above the glacier bed. The overlying glacier is gradually lifted. The shape of the water cupola is at any time 6 JÖKULL 25. ÁR given by the curve qj = 0 or C = 0 in Equation (8). At a time t0 no water has been accumulated beneath the depression. The equipotential curve Cp (x, z, t0) = 0 touches tlie glacier bed in one point beneath the centre of the depression. Fig. 3b shows the cupola at time t > tu. The curve cp = 0 lies beneath the glacier bed outside the reservoir. The bed attains a posi- tive potential which indicates that water will be forced along the bed towards the reservoir. Thus, the reservoir is sealed by a potential barrier. The barrier has a width W and a thres- hold value T, see Fig. 3b. As the cupola grows the potential barrier is reduced. If the curve cp = 0 is raised above the glacier bed, a hyd- raulic connection is introduced between the reservoir and the subglacial waterways outside. As water escapes from the cupola the water pressure at the reservoir starts dropping. The waterways outside the reservoir will tend to colse due to the ice overburden pressure, but the seal will not be restored. Since water is draining from a voluminous reservoir into a narrow waterway the pressure head at the re- servoir will drop very slowly. For some time after the seal is broken water flows out of the reservoir at a constant pressure. Frictional heat from the flowing water will melt ice forming subglacial tunnels. The tunnels will tend to close due to the overburden pressure. However, the rate of enlargement of the tunnels can be expected to exceed the rate of closure (Liestöl 1956, Nye in press). Therefore, a jökulhlaup results if any water escapes from the water re- servoir. A straight forward argument proves that ac- cumulation of water beneath a depression must lead to a jökulhlaup. A surface depression sets up a potential barrier. The depression is partly reduced by the rise of a water cupola, partly by the inflow of ice. As water is denser than ice, the potential barrier is reduced to nil be- fore the surface depression is filled up again. Consider a model in which the glacier thick- ness is constant. The datum level z0 is trans- lated upwards at the same rate as the centre of the water cupola. The roof of the reservoir, which is given by the curve cp = 0, is translated upwards at this rate. But outside the cupola the curve cp = 0 is lifted ten times faster, see Equation (8). The potential barrier is reducecl to nil before the depression is filled. — One
Blaðsíða 1
Blaðsíða 2
Blaðsíða 3
Blaðsíða 4
Blaðsíða 5
Blaðsíða 6
Blaðsíða 7
Blaðsíða 8
Blaðsíða 9
Blaðsíða 10
Blaðsíða 11
Blaðsíða 12
Blaðsíða 13
Blaðsíða 14
Blaðsíða 15
Blaðsíða 16
Blaðsíða 17
Blaðsíða 18
Blaðsíða 19
Blaðsíða 20
Blaðsíða 21
Blaðsíða 22
Blaðsíða 23
Blaðsíða 24
Blaðsíða 25
Blaðsíða 26
Blaðsíða 27
Blaðsíða 28
Blaðsíða 29
Blaðsíða 30
Blaðsíða 31
Blaðsíða 32
Blaðsíða 33
Blaðsíða 34
Blaðsíða 35
Blaðsíða 36
Blaðsíða 37
Blaðsíða 38
Blaðsíða 39
Blaðsíða 40
Blaðsíða 41
Blaðsíða 42
Blaðsíða 43
Blaðsíða 44
Blaðsíða 45
Blaðsíða 46
Blaðsíða 47
Blaðsíða 48
Blaðsíða 49
Blaðsíða 50
Blaðsíða 51
Blaðsíða 52
Blaðsíða 53
Blaðsíða 54
Blaðsíða 55
Blaðsíða 56
Blaðsíða 57
Blaðsíða 58
Blaðsíða 59
Blaðsíða 60
Blaðsíða 61
Blaðsíða 62
Blaðsíða 63
Blaðsíða 64
Blaðsíða 65
Blaðsíða 66
Blaðsíða 67
Blaðsíða 68
Blaðsíða 69
Blaðsíða 70
Blaðsíða 71
Blaðsíða 72
Blaðsíða 73
Blaðsíða 74
Blaðsíða 75
Blaðsíða 76
Blaðsíða 77
Blaðsíða 78
Blaðsíða 79
Blaðsíða 80
Blaðsíða 81
Blaðsíða 82
Blaðsíða 83
Blaðsíða 84
Blaðsíða 85
Blaðsíða 86
Blaðsíða 87
Blaðsíða 88

x

Jökull

Beinir tenglar

Ef þú vilt tengja á þennan titil, vinsamlegast notaðu þessa tengla:

Tengja á þennan titil: Jökull
https://timarit.is/publication/1155

Tengja á þetta tölublað:

Tengja á þessa síðu:

Tengja á þessa grein:

Vinsamlegast ekki tengja beint á myndir eða PDF skjöl á Tímarit.is þar sem slíkar slóðir geta breyst án fyrirvara. Notið slóðirnar hér fyrir ofan til að tengja á vefinn.