Jökull


Jökull - 01.12.1975, Síða 8

Jökull - 01.12.1975, Síða 8
Subglacial water reseruoirs and their stability The geometry of the subglacial water re- servoirs has been discussed. The stability of the reservoirs will now be examined. Fig. 3 a shows a cross-section through a con- vex glacier surface. A reservoir is situated be- neath a dome. The flow of water along the glacier bed depends on the potential cpb in Equation (1). The potential cpb attains a max- imum at the centre of the reservoir. If the glacier is permeable, the water flow in the cross-section can be described by the potential distribution cp (x, z, t) = constant. The equi- potential curve cp = 0 lies above the bed along tlie entire cross-section. A water divide is locat- ed beneath the crest of the dome. Meltwater is continually drained outwards from the dome. Water flows out from the reservoir at the same rate as into it. The reservoir remains constant in size and no jökulhlaups are to be expected. Oswald and Robin (1973) reported evidence for reservoirs of this type beneath the Antarctic Ice Sheet. Detailed mapping of glacier bed topo- graphy may reveal such reservoirs beneath gla- ciers in Iceland. Small reservoirs may be situat- ed in volcanic craters such as Öræfajökull, Eyja- fjallajökull and Snæfellsjökull, and in calderas like those observed on ERTS images at Kverk- fjöll and in Mýrdalsjökull. One might look for reservoirs in the central parts of Langjökull and Hofsjökull. The only possible site in the central part of Vatnajökull appears to be be- neath the saddle 20—30 km east of Grímsvötn, see Fig. 1 and a map of surface contours in Björnsson (1974). Consider next the growth of a reservoir be- neath a depression. Fig. 3b shows a cross-section through a concave glacier surface. The glacier bed is taken as a plane. The potential qjb at- tains a minimum beneath the depression and a maximum at the point C. The maximum for cpb defines a watershed at the point C. Water will flow along the bed towards the minimum of (pb and accumulate beneath the depression. Water flows towards tliat point. A dome shaped water reservoir rises like a cupola above the glacier bed. The overlying glacier is gradually lifted. The shape of the water cupola is at any time 6 JÖKULL 25. ÁR given by the curve qj = 0 or C = 0 in Equation (8). At a time t0 no water has been accumulated beneath the depression. The equipotential curve Cp (x, z, t0) = 0 touches tlie glacier bed in one point beneath the centre of the depression. Fig. 3b shows the cupola at time t > tu. The curve cp = 0 lies beneath the glacier bed outside the reservoir. The bed attains a posi- tive potential which indicates that water will be forced along the bed towards the reservoir. Thus, the reservoir is sealed by a potential barrier. The barrier has a width W and a thres- hold value T, see Fig. 3b. As the cupola grows the potential barrier is reduced. If the curve cp = 0 is raised above the glacier bed, a hyd- raulic connection is introduced between the reservoir and the subglacial waterways outside. As water escapes from the cupola the water pressure at the reservoir starts dropping. The waterways outside the reservoir will tend to colse due to the ice overburden pressure, but the seal will not be restored. Since water is draining from a voluminous reservoir into a narrow waterway the pressure head at the re- servoir will drop very slowly. For some time after the seal is broken water flows out of the reservoir at a constant pressure. Frictional heat from the flowing water will melt ice forming subglacial tunnels. The tunnels will tend to close due to the overburden pressure. However, the rate of enlargement of the tunnels can be expected to exceed the rate of closure (Liestöl 1956, Nye in press). Therefore, a jökulhlaup results if any water escapes from the water re- servoir. A straight forward argument proves that ac- cumulation of water beneath a depression must lead to a jökulhlaup. A surface depression sets up a potential barrier. The depression is partly reduced by the rise of a water cupola, partly by the inflow of ice. As water is denser than ice, the potential barrier is reduced to nil be- fore the surface depression is filled up again. Consider a model in which the glacier thick- ness is constant. The datum level z0 is trans- lated upwards at the same rate as the centre of the water cupola. The roof of the reservoir, which is given by the curve cp = 0, is translated upwards at this rate. But outside the cupola the curve cp = 0 is lifted ten times faster, see Equation (8). The potential barrier is reducecl to nil before the depression is filled. — One
Síða 1
Síða 2
Síða 3
Síða 4
Síða 5
Síða 6
Síða 7
Síða 8
Síða 9
Síða 10
Síða 11
Síða 12
Síða 13
Síða 14
Síða 15
Síða 16
Síða 17
Síða 18
Síða 19
Síða 20
Síða 21
Síða 22
Síða 23
Síða 24
Síða 25
Síða 26
Síða 27
Síða 28
Síða 29
Síða 30
Síða 31
Síða 32
Síða 33
Síða 34
Síða 35
Síða 36
Síða 37
Síða 38
Síða 39
Síða 40
Síða 41
Síða 42
Síða 43
Síða 44
Síða 45
Síða 46
Síða 47
Síða 48
Síða 49
Síða 50
Síða 51
Síða 52
Síða 53
Síða 54
Síða 55
Síða 56
Síða 57
Síða 58
Síða 59
Síða 60
Síða 61
Síða 62
Síða 63
Síða 64
Síða 65
Síða 66
Síða 67
Síða 68
Síða 69
Síða 70
Síða 71
Síða 72
Síða 73
Síða 74
Síða 75
Síða 76
Síða 77
Síða 78
Síða 79
Síða 80
Síða 81
Síða 82
Síða 83
Síða 84
Síða 85
Síða 86
Síða 87
Síða 88

x

Jökull

Beinleiðis leinki

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.