Jökull


Jökull - 01.12.1975, Blaðsíða 23

Jökull - 01.12.1975, Blaðsíða 23
that the emission of aparticles damages the lattice, increasingly so with time. This means that in a 1000 My old mineral, the present co- efficient of diffusion, if measured, may be quite different from the values of earlier times, and could not be used for the whole life-time of the mineral, e. g. with the aim of correcting the ages. The great influence of crystal size on dif- fusion loss, immediately suggests tests of sucli losses in dating work by single crystals: From each rock sample in K/Ar-dating, at least 10 sanidine crystals are dated, from the largest to the smallest ones, and of the most various shapes. The same is done for biotite and other potassium-bearing minerals in the sample. If the age turns out to be independent of size and shape for some mineral species, then dif- fusion seems to be excluded as an error. And if two or more mineral types have passed this test, also washing by penetrating ground- water seems excluded. Such dating would seem to be reliable. If, on the other hand. the ages increase regularly with mineral size, some data have at least been obtained to aid in the search for a correction of the age found for the largest minerals. We shall return to the problems of single crystals dating in another connection, but only add here en passant the phenomenon that during the grinding of large crystals of potassium feldspars, loss of argon from grains of diameter 10—80 microns is very obvious (Dalrymple and Lanphere, 1969, p. 147). The equation t2 = ti (r/R)2 explains this in all essentials, even if the coefficient of diffusion is found also to change from the macrocrystals to grains in this micron-range. The latter effect may in part be due to lattice dislocations or lattice distortion in the grinding process. To discuss further the importance of dimen- sion, we mention whole-rock dating. For acid rocks of fine grain, we only point out that theoretically the diffusion from mm-size grains is 100 times that from cm-size grains, if the shape is the same. The escaped argon, say, reaches the seams between crystals, and it is then along these that groundwater is capable of percolating and absorbing the argon. As to basalts, the matter is very complicated. The low content of potassium leads to the ex- pectation that “from geochemical considera- tions, most of the potassium . . . should reside in the last components to solidify — for example, in interstitial material, which is usually glass or fine-grained feldspar. Observations with elec- tron microprobes on potassium distribution in basalts have confirmed this expectation” (Dal- rymple and Lanphere, 1969, p. 181). “For this reason, a careful evaluation of the condition and composition of the interstitial material is very important for whole-rock dating” (I. c., p. 182). We have data (l.c.) on such interstitial potass- ium feldspar lamellae (considered in b)) of a thickness of 1—3 microns. If we expect inter- stitial potassium feldspar grains also to be in the micron range, we must expect their loss of argon to be 108 to 108 times faster than the loss from spherical crystals in the cm-range. And as the minute grains in the basalts are inter- stitial, as is the groundwater, loss of argon from basalts would be expected, and is well known to be very often far too serious and obvious to allow K/Ar-dadng. b) The plate. Here we use again the fact that diffusion is mathematically analogous to heat conduction, and consider an instructive special case of the latter. A slab of thickness 2-1 is heated by a homogeneously distributed source, A0 energy units per cm3. At the same time its sides are kept constantly at the original temperature of the slab, T0. This means that there must be some cooling device at the sides, to keep the temperature constant. Within the slab, the temperature rises, and a temperature gradient towards the sides is created at the same time. This means that a heat flow goes towards the cold sides, depending further on the conductivity K and the thickness of the slab. As the temperature in the middle of the slab rises, the gradient and the heat flow towards the sides increases, until ultimately a state is reached, when this loss of heat becomes equal to the produced heat within the slab. The central temperature then has reached a final equilibrium value Tmax = A0-12/2K, when T0 is taken to be zero (Carslaxu and Jaeger, 1959, p. 130-131). This shows that by a given heat production A0, and conductivity K, the final central tem- JÖKULL 25. ÁR 2 1
Blaðsíða 1
Blaðsíða 2
Blaðsíða 3
Blaðsíða 4
Blaðsíða 5
Blaðsíða 6
Blaðsíða 7
Blaðsíða 8
Blaðsíða 9
Blaðsíða 10
Blaðsíða 11
Blaðsíða 12
Blaðsíða 13
Blaðsíða 14
Blaðsíða 15
Blaðsíða 16
Blaðsíða 17
Blaðsíða 18
Blaðsíða 19
Blaðsíða 20
Blaðsíða 21
Blaðsíða 22
Blaðsíða 23
Blaðsíða 24
Blaðsíða 25
Blaðsíða 26
Blaðsíða 27
Blaðsíða 28
Blaðsíða 29
Blaðsíða 30
Blaðsíða 31
Blaðsíða 32
Blaðsíða 33
Blaðsíða 34
Blaðsíða 35
Blaðsíða 36
Blaðsíða 37
Blaðsíða 38
Blaðsíða 39
Blaðsíða 40
Blaðsíða 41
Blaðsíða 42
Blaðsíða 43
Blaðsíða 44
Blaðsíða 45
Blaðsíða 46
Blaðsíða 47
Blaðsíða 48
Blaðsíða 49
Blaðsíða 50
Blaðsíða 51
Blaðsíða 52
Blaðsíða 53
Blaðsíða 54
Blaðsíða 55
Blaðsíða 56
Blaðsíða 57
Blaðsíða 58
Blaðsíða 59
Blaðsíða 60
Blaðsíða 61
Blaðsíða 62
Blaðsíða 63
Blaðsíða 64
Blaðsíða 65
Blaðsíða 66
Blaðsíða 67
Blaðsíða 68
Blaðsíða 69
Blaðsíða 70
Blaðsíða 71
Blaðsíða 72
Blaðsíða 73
Blaðsíða 74
Blaðsíða 75
Blaðsíða 76
Blaðsíða 77
Blaðsíða 78
Blaðsíða 79
Blaðsíða 80
Blaðsíða 81
Blaðsíða 82
Blaðsíða 83
Blaðsíða 84
Blaðsíða 85
Blaðsíða 86
Blaðsíða 87
Blaðsíða 88

x

Jökull

Beinir tenglar

Ef þú vilt tengja á þennan titil, vinsamlegast notaðu þessa tengla:

Tengja á þennan titil: Jökull
https://timarit.is/publication/1155

Tengja á þetta tölublað:

Tengja á þessa síðu:

Tengja á þessa grein:

Vinsamlegast ekki tengja beint á myndir eða PDF skjöl á Tímarit.is þar sem slíkar slóðir geta breyst án fyrirvara. Notið slóðirnar hér fyrir ofan til að tengja á vefinn.