Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1990, Qupperneq 89

Jökull - 01.12.1990, Qupperneq 89
measured in Greenland snow, by assuming the source to be at 30-35°N, i.e. the warmtemperate belt. It also demonstrated that changes in the á-values due to cli- ntatic shifts are most likely due to shifts in the position °f the North Atlantic polar front in accordance with Ruddiman and Mclntyre (1981). Furthermore the model predicts that the slope of the Meteoric Line is mainly dependent on the abso- lute water vapor pressure or mixing ratio in the source area and that the d-values are mainly dependent on the sea surface temperature in the same area. This understanding of the behaviour of the é-values in high latitude ice-cap precipitation clearly makes possible tefined interpretation of S records in terms of paleo- climatic and paleoenvironmental changes. THEICE CORES Several ice-cores have been recovered from the Greenland Ice Sheet in order to access the various pa- leoenvironmental parameters found in the ice. Fig. 1 shows 6-variations with depth in the deep Camp Cen- tury ice-core, NW Greenland (77.2°N; 61.2°W). The figure shows the annual variations in ó180 where the summer snow is higher in <51S0 than the winter snow und demonstrates one of the ice core dating methods, which is based on counting of individual annual lay- ers. The figure demonstrates that the amplitude of the ^-seasonal variations decreases rapidly from about 10 promille in the uppermost strata (a and b) to about 2 promille at greater depths (c and d). The ampli- tude then remains about 1.5 promille for thousands of years as the mass exchange at depths takes place only by slow molecular diffusion in the solid ice (Johnsen et al-, 1972; Johnsen, 1977). Therefore the dating method based on counting of annual 6-cycles can be aPplied successfully and with an accuracy compara- ble to that of dendrochronology on ice as old as 8000 FP. However, the accumulation rate must exceed some 0-20 m of ice per year for the annual cycles to survive Ihe fimification process. In deeper strata, ice layer thinning and diffusion of the isotopes tend to oblit- erate the seasonal pattern (Johnsen, 1977; Hammer et al., 1986) and other dating methods must be used, such as: 1. Annual layers in other parameters like dust, ni- trates, etc. (Hammer et al., 1978). 2. Radioactive isotopes, especially 14C (Hammer et al., 1986). 3. Correlation with other dated records, like deep sea cores and pollen records (Dansgaard et al., 1982). 4. Ice flow consideration (Reeh et al., 1985). In Fig. 2 the 180-measurements on two Green- land ice-cores; Dye-3 situated in Southeast Greenland (65.2°N;43.8°W) and Camp Century in Northwest Greenland (77.2°N;61.2°W) are compared. The deep- est 300 m of the ó-profiles are shown but the former core is thought to be continuous to about 90.000 yrs BP and the latter to more than 125.000 yrs BP. The deep parts of the profiles are indirectly dated by tentative correlation with a deep sea foraminifera record. It appears that all the major (5-oscillations are observed in both cores despite the 1400 km distance between them and the different ice flow conditions at the drill sites. It has therefore been concluded that the violent oscillations in the <5I80 are to be attributed to climatic changes at high latitudes (Dansgaard et al., 1982). In order to investigate further climatic and other environmental variations in the high latitude North At- lantic region, a 325 m long ice core was drilled by a Nordic group in the Renland ice cap in the Scoresby- sund Fjord, East Greenland, in the summer of 1988. The preliminary results show that the ice core contains continuous information on climatic variations during the last 130.000 years and good correlation is observed with the former deep Greenland ice cores Dye-3 and Camp Century. In the Renland core the well known climatic optimum during the Holocene is for the first time clearly observed in an ice core from Greenland. The studies mentioned above on deep Greenland ice-cores have demonstrated that the late Weichselian glaciation in the North Atlantic region was character- ized by a long series of climatic oscillations (Dans- gaard et al., 1984) and that the last glacial cold pe- riod ended abruptly 10.700 years ago (Hammer et al., 1986). In a more recent study Dansgaard et al. (1989) focus on the very end of the Younger Dryas cold phase (Fig. 3). On the basis of detailed heavy-isotope and JÖKULL, No. 40, 1990 85
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166
Qupperneq 167
Qupperneq 168
Qupperneq 169
Qupperneq 170
Qupperneq 171
Qupperneq 172
Qupperneq 173
Qupperneq 174
Qupperneq 175
Qupperneq 176
Qupperneq 177
Qupperneq 178
Qupperneq 179
Qupperneq 180
Qupperneq 181
Qupperneq 182
Qupperneq 183
Qupperneq 184
Qupperneq 185
Qupperneq 186
Qupperneq 187
Qupperneq 188
Qupperneq 189
Qupperneq 190
Qupperneq 191
Qupperneq 192
Qupperneq 193
Qupperneq 194
Qupperneq 195
Qupperneq 196
Qupperneq 197
Qupperneq 198
Qupperneq 199
Qupperneq 200
Qupperneq 201
Qupperneq 202
Qupperneq 203
Qupperneq 204
Qupperneq 205
Qupperneq 206

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.