Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1990, Qupperneq 102

Jökull - 01.12.1990, Qupperneq 102
units, from the average pH of streams and lakes, is common during these episodes. Laboratory and field experiments indicate that 50-80% of the pollutants in snow are released with the first 30% of the meltwa- ter and that the very first fraction of meltwater may contain more than 5 times the average snowpack con- centrations (Johannessen and Henriksen, 1978). Al- though it is known that small amounts of salts and pollutants may be included in solid solutions in ice crystals (Fletcher, 1970) there are reasons to believe that most of the salts and pollutants are found on the surface of the snow crystals, readily available to the early meltwaters (Johannessen and Henriksen, 1978). A large portion of the yearly precipitation in Ice- land falls as snow. The frequent alternation of freeze and thaw periods in the Lowlands of Iceland in the winter time, will probably hinder the accumulation of sea-salts and plausible pollutants into a massive snow- pack to be released during a short melting period in spring. However, the reverse might be true in the Highlands and therefore on the glaciers of Iceland. The presence of particles and ions in meltwater from the polar regions and other remote parts of the world, demonstrates that the transport of gases and aerosols is a regular occurrence, world wide. The ma- joraerosol sources are: oceanic aerosol (lOOOmillion tonnes/year), soil or crust derived aerosol, sometimes referred to as continental aerosol (100 to 1000 mil- lion tonnes/year), extraterrestrial dust ( 0.1-1 million tonnes/year), and anthropogenic and volcanic mate- rials (Shaw, 1989). Today’s yearly deposit of sulfu- ric and nitric acids in S.E. Greenland, attributed to anthropogenic activities, is 4 and 2 times the yearly amount deposited prior to the years 1900 and 1950 respectively. At present, the yearly sulfate deposit appears to have levelled off but the yearly nitrate de- posit continues to increase (Clausen and Langway, 1989). Oceanic aerosol is abundant on land close to the oceans but continental and anthropogenic aerosols often dominate in the center of the continents (Junge and Werby, 1958). The quantity of volcanic aerosol can be enormous in the vicinity of erupting volcanoes and even worldwide during major eruptions. Evaporated sea water droplets that form as jet drops from rising bubbles or result from the disruption of surface films in breaking ocean waves constitutethe source of sea salt particles, often referred to as oceanic or marine aerosol. These particles range from a few tenths of a micrometer to more than 100 microme- ters in diameter. There are about 0.5 to 2 sea salt particles with radii greater than a micrometer (/im) in each cubic centimeter of air in the marine environ- ment (Shaw, 1989). This translates to a concentration of 10-20 /íg/m3 close to the ocean surface. The con- centration decreases rapidly with altitude and is less than 1 % of the near ocean surface concentration at 2- 3 km altitude. Along coastlines, the sea salt aerosols reach greater altitude than over the ocean because of increased wind turbulence over land (Shaw, 1989). The transport of aerosols from the atmosphere to the surfaces of glaciers may occur by wet or dry depo- sition. Wet deposition refers to the removal of gases and particles from the atmosphere by precipitation. Wet deposition generally dominates (Davidson, 1989) and proceeds in three main steps: (1) nucleation, (2) in-cloud scavenging by existing cloud droplets and ice crystals, and (3) below-cloud scavenging. The snow in Greenland and Antarctica contains a mixture of small amounts of sea salt and two mineral acids, H2SO4 and HNO3 which are attributed to an- thropogenic activities. The continental contribution is very weak. However, during the ice ages, the in- put of crustal material played a very significant role, while the sea salt contribution is also increased, but to a lesser extent. The major cations in snow from Greenland and Antarctica are H+, Na+, K+, NH4+, Mg2+ and Ca2+ and the major anions are Cl_, S042- and N03_(Delmas and Legrand, 1989). The purpose of this study is, to determine the chemistry of the 1987-1988 precipitation on the Vatnajökull glacier in SE-Iceland, to look for spatial changes in the snow chemistry, to study the preferen- tial release of salts and pollutants caused by the partial melting of snow, and finally to develop a model to analyse the effect of the degree of partial melting of snow upon the pH of meltwater. 98 JÖKULL, No. 40, 1990
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166
Qupperneq 167
Qupperneq 168
Qupperneq 169
Qupperneq 170
Qupperneq 171
Qupperneq 172
Qupperneq 173
Qupperneq 174
Qupperneq 175
Qupperneq 176
Qupperneq 177
Qupperneq 178
Qupperneq 179
Qupperneq 180
Qupperneq 181
Qupperneq 182
Qupperneq 183
Qupperneq 184
Qupperneq 185
Qupperneq 186
Qupperneq 187
Qupperneq 188
Qupperneq 189
Qupperneq 190
Qupperneq 191
Qupperneq 192
Qupperneq 193
Qupperneq 194
Qupperneq 195
Qupperneq 196
Qupperneq 197
Qupperneq 198
Qupperneq 199
Qupperneq 200
Qupperneq 201
Qupperneq 202
Qupperneq 203
Qupperneq 204
Qupperneq 205
Qupperneq 206

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.