Jökull


Jökull - 01.12.1966, Síða 4

Jökull - 01.12.1966, Síða 4
 fí — ——- —- /// S / / ® / / /. / x / ' / / / ' /--~~----------------------- . / / / / / / / // /////«, Fig. 1. Explanation of isostatic and eustatic changes. See text. 1. mynd. Til skýringar á lyftingu sjávarbotns á isöld. coastal areas. A and B in Fig. 1 are a section of a continental and oceanic block, respective- ly. By isostatic equilibrium before glaciation, 1—2 is a horizontal line of equal pressure. During glaciation an oceanic layer of thickness d, assumed here to be 100 m, is removed and deposited as ice in special areas outside the block A. As a result, pressure becomes inequal along 1—2 and we may consider four types of reaction to this. 1) Sub-crustal material is so fluid that it yields immediately and fully to the change in pressure. The ocean floor is then generally raised by 100/3.4 = 29.4 30 m, line 1—2 changes to 1—21. The coastal strip is raised by half this value if the sea was at least 100 m deep at the original coast; if the shelf clips 1/2 degree, a correction of only a fraction of a metre must be applied, and thus can be dropped. The real vertical movements, relative to the pre-glacial state, depend on the relative area of oceans and continents ancl on the downwarping in glaciated areas but this is of no avail here; only the relative movements of ocean floor and of continental margin, as given above, is of interest. We thus find that the removal of an ocean laver of 100 m thickness gives a measur- able drop of sea-level by 85 m, relative to the continental coast, or a corresponding relative uplift of the ocean floor by 15 m. 2) Sub-crustal material vields with a time lag. 3) Sub-crustal material is plastic but the yield value is larger than about 10 kg/cm2 (the pressure difference corresponding to 100 m of water). The ocean bottom will then remain stationary when layer d is removed, and the measurable drop of sea-level is 100 m. 4 )The yield value is lower than in case 3, ancl there is only partial response to the pressure dif- ference. Our rnain concern is the rise of sea-level in late- and post-glacial time. This depends on the two factors: sinking of the ocean floor relative to the continent A, and the water mass coming back to the ocean from the shrink- ing glaciers. As a measure of the latter let us tentatively take the shrinkage of the Scandinav- ian glacier. The size of the latter is inferred for three epochs: 8800 B.P. (0.21 10« km2), 10.000 B.P. (1.06 10« km2), and 18.000 B.P. (2.5 10« krn2), from Sveriges geologi (Magnusson et. al. 1963, p. 462), and a smooth curve, Ga in Fig. 2, con- structed. If the volume of the glacier were pro- portional to the area, the curve A in the same figure shows the expected rise of sea-level for the case of a fix ocean floor (case 3). If the more realistic assumption is made that the thick- ness of the glacier was at each time proportional to the diameter, the curve for the volume is given by Gv (Gv(xGa%). The corresponcling rise of sea-level for case 3 is shown by the curve V3. For case 1 the ocean floor sinks relative to the coastal area along the curve Bi, ancl relative sea-level then rises along the curve Vi. B2 and B4 are examples of cases 2 and 4, respectively. V4 woulcl lie between V4 and V3, and V2 would lie close to V1 except at the right end. The curve S4 (the ordinate of the minimum near 18.000 B.P. is taken as unity) lies mostly between V4 and V3 and it seerns on the whole hardly possible to distinguish between the cases 1—4 by use of Si on one side and such a general picture of glacier shrinkage as we have used on the other. Sub-crustal material is prob- ably plastic and a yield value of about 10 kg/cm2 is mostly assumed (for the Icelandic area I have found that this is an upper limit). This would very likely be equivalent to case 3, 1. e. a fix ocean floor, and this case will be assumed in the following. In the interval 11.000 —9.000 B P. this appears to be a good approx- imation. We shall also take Gv as a fair ap- proximation to the relativ decrease of glaciers in Iceland. 2. THE GLACIATED SCANDINAVIAN AREA. When the glaciers of the Ice Age shrank, the glaciated areas began to rise isostatically. Con- cerning the mode of rise, it has been suggested in connection with the North American region that the marinal areas began to rise earlier 158 JÖKULL
Síða 1
Síða 2
Síða 3
Síða 4
Síða 5
Síða 6
Síða 7
Síða 8
Síða 9
Síða 10
Síða 11
Síða 12
Síða 13
Síða 14
Síða 15
Síða 16
Síða 17
Síða 18
Síða 19
Síða 20
Síða 21
Síða 22
Síða 23
Síða 24
Síða 25
Síða 26
Síða 27
Síða 28
Síða 29
Síða 30
Síða 31
Síða 32
Síða 33
Síða 34
Síða 35
Síða 36
Síða 37
Síða 38
Síða 39
Síða 40
Síða 41
Síða 42
Síða 43
Síða 44
Síða 45
Síða 46
Síða 47
Síða 48
Síða 49
Síða 50
Síða 51
Síða 52
Síða 53
Síða 54
Síða 55
Síða 56
Síða 57
Síða 58
Síða 59
Síða 60
Síða 61
Síða 62
Síða 63
Síða 64
Síða 65
Síða 66
Síða 67
Síða 68
Síða 69
Síða 70
Síða 71
Síða 72
Síða 73
Síða 74
Síða 75
Síða 76
Síða 77
Síða 78
Síða 79
Síða 80
Síða 81
Síða 82
Síða 83
Síða 84

x

Jökull

Beinleiðis leinki

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.