Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1975, Qupperneq 7

Jökull - 01.12.1975, Qupperneq 7
examples which illustrate this geometrical rela- tionship. Beneath a convex glacier surface the top of a water reservoir would be in concave shape. For such a configuration a depression would have to be present in the glacier bed. Beneath a concave glacier surface a reservoir has a convex shape, rising above the bed. The bed-rock itself may even be convex. Given maps of a glacier surface and the glacier bed-rock one can determine whether a reservoir is to be expected at the glacier bed. Temperate glaciers are considered to be per- meable to water (Nye ancL Frank 1973, Nye in press). The flow of water in a cross-section can be described by the potential distribution (7) (p (x, z, t) = pw g (z - z0) + p in which p is the water pressure in the water passages, x and z are the horizontal and the vertical coordinates, respectively, z0 is an arbitr- ary datum level and t is the time. The water pressure inside the ice may be estimated equal to the ice overburden pressure pf = p{ g (zs — z), in which zs is the elevation of the glacier sur- face. The family of equipotential curves Cp (x, z, t) = C = constant illustrates the flow of water in the cross-section. These curves are given by In an isotropic permeable medium the stream- lines would be perpendicular to the equipo- tential lines. Figs. 3 a and b show the potential distribu- tion in a cross-section. The location of the datum level needs some explanation. The re- servoir has a shape which gives an equilibrium of vertical forces such that the overlying glacier floats in an isostatic equilibrium (one consequ- ence of Equation (2)). A horizontal datum line z0 can be placed above the reservoir. The height of the datum line may be chosen such that the equipotential line (surface in three dimensions) cp = 0; (C = 0) marks the roof of the water reservoir. This elevation is found by adding the height (pi/pw) Hj (that is °/io of the ice thick- ness) to the top of the water reservoir. This datum level is a convenient reference level for the overburden pressure at the glacier bed. — According to Equation (8), the surface of the water reservoir is the mirror image, magnified vertically by the factor pi/(pw —Pi); of the glacier surface about the datum level. The same result is given in Equation (6). The other equi- potential curves are drawn by the vertical translation of the curve cp (x> z, t) = 0. In the ice above the glacier bed cp > 0. Inside the water reservoir the water pressure is hydro- static and cp = 0. Water flows towards the water reservoir from high to low potentials. Fig. 3. A schemadc sec- tion of a glacier to illu- strate the relationship be- tween glacier surface and the shape of subglacial water reservoirs. a) Stable reservoir in a bed-depression beneath a dome. b) Water cupola beneath a surface depression. Mynd 3. Þversnið af jökli, sem sýnir samband milli lögunar yfirborðs og vatnsgeyma. a) Geymir i skál undir jökulbungu. b) Hvelfdur geymir undir dœld í jökulyfirborði. JÖKULL 25. ÁR 5
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.