Jökull


Jökull - 01.12.1975, Blaðsíða 21

Jökull - 01.12.1975, Blaðsíða 21
an eruption fissure. When the eruption comes to an end, the final filling of the fissure, at least up to a few liundred metres from the sur- face, will contain excess argon. This magma forms a dyke, and the possibility exists that this dyke wifl give a far too high K/Ar age. In fact, a dyke of K/Ar age 260 My cuts the British Tertiary lava flows, the age of which is found by the same method to be 50—60 My (Mussett et al.j 1972). As these authors point out, this case is a warning against using dykes for dating work. The chances are that dykes may contain more Ar than lavas of the same age. On the background of our above discussion we cannot, however, go so far as to predict that dykes should generally have been per- manently retentive for an initial excess argon; we have seen that argon may be lost very tho- roughly by groundwater action. We should also consider large intrusive bodies in this connection. The answer for dykes and other intrusives might possibly be similar to the one we gave for surface lavas at the be- ginning of this section, i. e. the excess argon might by the crystallization largely go into the interstitial spaces, frorn which it could be trans- ported by percolating groundwater very soon. But we cannot exclude the possibility that much of the initial argon was incorporated as foieign atoms in minerals. This means that excess argon might give too high ages in single crystal dat- ing as well as in whole-rock dating of large intrusives and dykes. It appears that only in fine-grained surface-, and shallow water glassy igneous rocks one cair take very early loss of the excess argon for granted. But in other re- spects the latter material has obvious short- comings for dating. 3. THE ARGON LEVEL IN GROUND- WATER COMPARED WITH THE RATE OF ACCUMULATION OF RADIOGENIC ARGON IN POTASSIUM-BEARING MINERALS. In spite of the just mentioned possibilities of excess argon, it is generally assumed that a potassium-bearing mineral starts with zero radiogenic argon content. In the present sec- tion we shall do so, and point out a consequent perplexing situation due to argon in ground- water. Rocks are generally soaked with interstitial groundwater which contains atmospheric argon, in the ratio 40Ar/36Ar = 295.5. To clarify the perplexity of the situation, we consider a sani- dine crystal, a potassium-rich and important mineral, from the point of view of radiometric dating. By the normal composition of sanidine, K(AlSÍ30g), potassium is 14% by weight. By a density of 2.55 g/crn3 for sanidine, we have 0.358 g K/cm3. Of this, 40K makes out 1.19 • 10-4, and again 11% of this produces argon. Hence, the mass of argon-producing 40K is 4.68 • 10-° g/cm3, and the number of such 40K atoms is 7.00 • 101(i per cm3. As the decay constant is 5.85 • 10-14/year, the annual number of 40Ar atoms produced is 4.09 • 10° per cm3. The absorbed atmospheric argon in ground- water is about 0.5 cm3 gas per litre (gas re- duced to 1 atm., 0 °C). This corresponds to 1.345 • 1016 atoms of argon per cm3 in the groundwater. Hence, it takes 3.28 • 10° years, or about 73% of the age of the earth, for the sanidine to produce the same concentration of argon/cm3, as there was all the time in the surrounding groundwater per cm3. The radio- genic argon in the sanidine is thus, in the early stages, produced within a deep argon-low. Later, the situation becomes most problematic. Will argon tend to diffuse into the mineral from the groundwater or the other way round? The clue to this question lies in the equi- librium of concentration between water and mineral. For comparison, we may notice that in equilibrium, there are 10 cm3 argon in the air ancl 0.5 cm3 argon in water for a 1000 cm3 volume; the equilibrium concentration of argon is thus 20 to 1 between air and water. In argon equilibrium between water and sanidine, there would most probably be far less concentration in the sanidine. But as far as we know, there are no measurements concerning that equilibrium. Diffusivity of argon in sani- dine varies by many orders of magnitude frorn case to case in the temperature range where such measurements have been made, i. e. 400— 1150 °C. This variability has been suggested to be due to lattice dislocations, which are highly irregular and unpredictable. Diffusivity in the really significant range of 0—100 °C, seems not to have been measured, and there is JÖKULL 25. ÁR 1 9
Blaðsíða 1
Blaðsíða 2
Blaðsíða 3
Blaðsíða 4
Blaðsíða 5
Blaðsíða 6
Blaðsíða 7
Blaðsíða 8
Blaðsíða 9
Blaðsíða 10
Blaðsíða 11
Blaðsíða 12
Blaðsíða 13
Blaðsíða 14
Blaðsíða 15
Blaðsíða 16
Blaðsíða 17
Blaðsíða 18
Blaðsíða 19
Blaðsíða 20
Blaðsíða 21
Blaðsíða 22
Blaðsíða 23
Blaðsíða 24
Blaðsíða 25
Blaðsíða 26
Blaðsíða 27
Blaðsíða 28
Blaðsíða 29
Blaðsíða 30
Blaðsíða 31
Blaðsíða 32
Blaðsíða 33
Blaðsíða 34
Blaðsíða 35
Blaðsíða 36
Blaðsíða 37
Blaðsíða 38
Blaðsíða 39
Blaðsíða 40
Blaðsíða 41
Blaðsíða 42
Blaðsíða 43
Blaðsíða 44
Blaðsíða 45
Blaðsíða 46
Blaðsíða 47
Blaðsíða 48
Blaðsíða 49
Blaðsíða 50
Blaðsíða 51
Blaðsíða 52
Blaðsíða 53
Blaðsíða 54
Blaðsíða 55
Blaðsíða 56
Blaðsíða 57
Blaðsíða 58
Blaðsíða 59
Blaðsíða 60
Blaðsíða 61
Blaðsíða 62
Blaðsíða 63
Blaðsíða 64
Blaðsíða 65
Blaðsíða 66
Blaðsíða 67
Blaðsíða 68
Blaðsíða 69
Blaðsíða 70
Blaðsíða 71
Blaðsíða 72
Blaðsíða 73
Blaðsíða 74
Blaðsíða 75
Blaðsíða 76
Blaðsíða 77
Blaðsíða 78
Blaðsíða 79
Blaðsíða 80
Blaðsíða 81
Blaðsíða 82
Blaðsíða 83
Blaðsíða 84
Blaðsíða 85
Blaðsíða 86
Blaðsíða 87
Blaðsíða 88

x

Jökull

Beinir tenglar

Ef þú vilt tengja á þennan titil, vinsamlegast notaðu þessa tengla:

Tengja á þennan titil: Jökull
https://timarit.is/publication/1155

Tengja á þetta tölublað:

Tengja á þessa síðu:

Tengja á þessa grein:

Vinsamlegast ekki tengja beint á myndir eða PDF skjöl á Tímarit.is þar sem slíkar slóðir geta breyst án fyrirvara. Notið slóðirnar hér fyrir ofan til að tengja á vefinn.