Jökull


Jökull - 01.12.1989, Síða 9

Jökull - 01.12.1989, Síða 9
In order to calculate the thickness of the ice-layer from the reflection times, the interval velocity of layer 2 is needed. The RMS velocity for an ima- gined reflection from the bottom of layer 1 was cal- culated numerically using the velocity model from the refraction profile, giving Vms=2390 m/s. The uphole time (13 ms) was used as the interval time for layer 1. Using the observed Vrms for the bottom of layer 2, Dix formula was used to calculate the interval velocity of layer 2. The results are given in Table II and Fig. 4. No analysis was carried out to extract a velocity for the water layer from the data. The velocity of fresh water is a slowly varying function of tempera- ture and the value used here is 1420 m/s, which corresponds to a temperature of 4 °C (Zemansky and others, 1966, p. 258). No measurements of the tem- perature of the subglacial lake have been carried out nor have there been any theoretical studies of its temperature profile (Björnsson and Kristmannsdótt- ir, 1984; Björnsson, 1988). The value of 4 °C is chosen here as it is the temperature at which a body of water is most dense and gravitationally stable. PROCESSING The processing carried out on the data included frequency filtering, normal moveout correction, spa- tial filtering and summing of adjacent traces. The frequency filtering was carried out in the time domain and the passband used was 80-150 Hz on the largest part of the data. On some parts of the data two passbands (50-125 Hz and 160-200 Hz) were used. The purpose of the frequency filtering was to reduce random noise and cut off spurious resonance frequencies present on some traces due to an improperly placed or slightly defective geophone. Normal moveout correction (NMO) was carried out using a velocity function based on the results of the velocity analysis. The velocity values used as input for the function were V=3570 m/s for the ice and V=1420 m/s for the water. In addition to frequency filtering, spatial filtering (mixing) was applied to the seismic sections after moveout to further reduce the noise content. A lowpass filter with a cutoff wavelength of 30 m turned out to give the best results. As the distance between reflection points along the seismic lines is 10 m (half the geophone spacing) the filter cuts off only the highest spatial frequencies present. In this set of data such spatial frequencies are only caused by random noise and perhaps by diflractions. Despite the loss in resolution and a slight danger of aliasing, horizontal summing of adjacent traces turned out to be advantageous, as the signal to noise ratio was improved. It was therefore applied to all the data after frequency filtering, NMO and spatial filtering. Parts of the data were contaminated by random noise caused by a faulty tape recorder. In addition to the processing steps described above, consider- able editing of noisy traces had to be carried out. A large part of this process involved treating the noisy parts of the data with a gain function which reduced the amplitude of those parts of the traces which evi- dently only contained random noise. The original hard copies from the survey were used to define these areas on the seismic traces. RESULTS The processed seismic lines (Figs. 5a-c) show clearly the reflections from the ice-water interface (’a’) and the lake bottom (’b’). Deeper reflections appear to be present in the northem part of line 2 (’c’-’e’) and in places on lines 1 (’c’) and 3 (’c’-’e’). Multiples are mostly absent from the data, but a ghost trails the ice-water reflection by about 25 ms in places. Some parts of the sections are seriously downgraded by noise. These parts are 3.5-3.7 km in line 1 and 2.0-2.1 km, 3.3-3.4 km and 4.2-4.3 km in Iine 3. The ice-water interface reflection is everywhere strong, especially in the interior of the shelf where it is regular and continuous. Furthermore, the reflection from the lakefloor can be seen on all three seismic lines. Only in one place do the two reflections merge, at 2.4 km in line 3 (Fig. 5c). In other places the lakefloor reflection disappears near the edges of the ice shelf. The absence of reflections near the end of the lines indicates that the slopes bordering the relatively flat caldera floor are fairly JÖKULL, No. 39, 1989 7
Síða 1
Síða 2
Síða 3
Síða 4
Síða 5
Síða 6
Síða 7
Síða 8
Síða 9
Síða 10
Síða 11
Síða 12
Síða 13
Síða 14
Síða 15
Síða 16
Síða 17
Síða 18
Síða 19
Síða 20
Síða 21
Síða 22
Síða 23
Síða 24
Síða 25
Síða 26
Síða 27
Síða 28
Síða 29
Síða 30
Síða 31
Síða 32
Síða 33
Síða 34
Síða 35
Síða 36
Síða 37
Síða 38
Síða 39
Síða 40
Síða 41
Síða 42
Síða 43
Síða 44
Síða 45
Síða 46
Síða 47
Síða 48
Síða 49
Síða 50
Síða 51
Síða 52
Síða 53
Síða 54
Síða 55
Síða 56
Síða 57
Síða 58
Síða 59
Síða 60
Síða 61
Síða 62
Síða 63
Síða 64
Síða 65
Síða 66
Síða 67
Síða 68
Síða 69
Síða 70
Síða 71
Síða 72
Síða 73
Síða 74
Síða 75
Síða 76
Síða 77
Síða 78
Síða 79
Síða 80
Síða 81
Síða 82
Síða 83
Síða 84
Síða 85
Síða 86
Síða 87
Síða 88
Síða 89
Síða 90
Síða 91
Síða 92
Síða 93
Síða 94
Síða 95
Síða 96
Síða 97
Síða 98
Síða 99
Síða 100
Síða 101
Síða 102
Síða 103
Síða 104
Síða 105
Síða 106
Síða 107
Síða 108
Síða 109
Síða 110
Síða 111
Síða 112
Síða 113
Síða 114
Síða 115
Síða 116
Síða 117
Síða 118
Síða 119
Síða 120
Síða 121
Síða 122
Síða 123
Síða 124
Síða 125
Síða 126
Síða 127
Síða 128
Síða 129
Síða 130
Síða 131
Síða 132

x

Jökull

Beinleiðis leinki

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.