Jökull


Jökull - 01.12.1989, Síða 16

Jökull - 01.12.1989, Síða 16
flows. Direct evidence from observations since 1919 as well as historical records of jökulhlaups, extending back to the sixteenth century, suggests that the caldera lake has existed for at least 400 years. At the same time numerous eruptions are known to have occurred in Grímsvötn (Þórarinsson, 1974). The lavas must therefore have been extruded subaqueously. The edges of the lava flows are 15- 20 m high and their surface is relatively flat apart from a slight dip towards north. The lava flows observed on the present caldera floor were formed in eruptions in the southern part of the caldera. The dip of the deeper reflections is similiar to the general dip of the caldera floor. This suggests that the lavas, that are believed to give rise to these reflections, also originated in the southem part. Apparently, eruptions have been more frequent under the southem caldera wall than elsewhere within the caldera. Most of the lava flows are believed to be small. Each flow covers an area of only a few square kilometres. This implies that the volume of each flow is probably less than 0.1 km3. Larger flows would cross the caldera floor to the northem caldera wall. The deeper reflections in line 2 do indeed sug- gest that larger lava flows have been erupted occa- sionally. Altematively, these deeper units could be sills, intruded into the caldera infill. Further, the data suggest that the caldera infill is mostly made up of lavas in the southem and southwestern part of the caldera but that sediments constitute a greater pro- portion in the northern part (Fig. 8). The contribution of volcanic eruptions within the caldera to the melting of ice has been considered negligible, as the eruptions have been considered small, producing mostly tephra (Þórarinsson, 1974). The existence of lava flows within the caldera sug- gests, that these ideas need to be reconsidered. The flows could be produced by the eruptions that have been observed at the end of some jökulhlaups. They could also be produced by entirely subaqueous erup- tions which were not detected, probably occurring at high water level. If eruptions producing lava flows have been frequent, their effect on the thermal heat flux of the area could be substantial. Bjömsson (1983, 1988) estimated variations in subglacial melting at Grímsvötn over the period 1860-1986. These variations reflect variations in the thermal power of the area. His results show a base heat transfer rate of 4500-5500 MW. Peaks in the heat flux when the total power reaches 10000- 15000 MW, are superimposed on the base heat flow. Björnsson suggests that these peaks are caused by volcanic eruptions at the glacier base, but that the base heat flux is drawn from a deeper magma body by hydrothermal convection. A decline in the base rate from 5000 MW to 4500 MW is detected over the period up to 1976. Since 1976, a sudden drop in the thermal power to 2500-3000 MW has been observed. This decreased geothermal output of Grímsvötn is further supported by the measurements mentioned earlier, on the increased thickness of the ice shelf. Also, maps compiled at various times over the last 50 years show that the area of the lake has decreased in this period (Bjömsson, 1988). As pointed out by Björnsson (1974, 1988), an eruption within the lake is unlikely to spark off a jökulhlaup immediately, as the water level would be raised only slightly. This can be explained by the fact that melting of the ice shelf does not change the water level, and rising of the water level would be controlled by the flow of ice into the lake. On the other hand, a subglacial eruption north of the lake could melt large volumes of ice and the meltwater would be drained into the lake causing a sudden rise in water level. The jökulhlaup in 1938 was an example of such an event (Björnsson, 1988). There- fore, a difference exists between the effects of vol- canic eruptions on the behaviour of the jökulhlaups: frequent eruptions within the caldera are likely to sustain a high level of melting but raising of the water level would be gradual. On the other hand, an eruption north of the caldera would most likely spark off a large unexpected jökulhlaup. Conse- quently, a sharp peak would be detected in the observed thermal power of the area. The thermal effects of eruptions onto the lakefloor can be estimated in the following way: Consider a period of high eruption frequency, with an eruption occurring once every 10 years. In each event, a total 14 JÖKULL, No. 39, 1989
Síða 1
Síða 2
Síða 3
Síða 4
Síða 5
Síða 6
Síða 7
Síða 8
Síða 9
Síða 10
Síða 11
Síða 12
Síða 13
Síða 14
Síða 15
Síða 16
Síða 17
Síða 18
Síða 19
Síða 20
Síða 21
Síða 22
Síða 23
Síða 24
Síða 25
Síða 26
Síða 27
Síða 28
Síða 29
Síða 30
Síða 31
Síða 32
Síða 33
Síða 34
Síða 35
Síða 36
Síða 37
Síða 38
Síða 39
Síða 40
Síða 41
Síða 42
Síða 43
Síða 44
Síða 45
Síða 46
Síða 47
Síða 48
Síða 49
Síða 50
Síða 51
Síða 52
Síða 53
Síða 54
Síða 55
Síða 56
Síða 57
Síða 58
Síða 59
Síða 60
Síða 61
Síða 62
Síða 63
Síða 64
Síða 65
Síða 66
Síða 67
Síða 68
Síða 69
Síða 70
Síða 71
Síða 72
Síða 73
Síða 74
Síða 75
Síða 76
Síða 77
Síða 78
Síða 79
Síða 80
Síða 81
Síða 82
Síða 83
Síða 84
Síða 85
Síða 86
Síða 87
Síða 88
Síða 89
Síða 90
Síða 91
Síða 92
Síða 93
Síða 94
Síða 95
Síða 96
Síða 97
Síða 98
Síða 99
Síða 100
Síða 101
Síða 102
Síða 103
Síða 104
Síða 105
Síða 106
Síða 107
Síða 108
Síða 109
Síða 110
Síða 111
Síða 112
Síða 113
Síða 114
Síða 115
Síða 116
Síða 117
Síða 118
Síða 119
Síða 120
Síða 121
Síða 122
Síða 123
Síða 124
Síða 125
Síða 126
Síða 127
Síða 128
Síða 129
Síða 130
Síða 131
Síða 132

x

Jökull

Beinleiðis leinki

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.