Skógræktarritið - 15.05.2001, Qupperneq 149

Skógræktarritið - 15.05.2001, Qupperneq 149
ecological conditions and scales of observation. If validated against proper real historic data, it will represent an additional contribution to already per- formed modeling efforts for this system (e.g., Virtanen et al. 1998) if the HIBECO model predicts with confidence not only the actual outbreak- based on a given a set of conditions (model input) - but also its expected severity and dispersion on a local and regional scale. The present modeling program will unfortunately not have re- sources to actually make such a detailed forecast for a given locality, due to the substantial magnitude of data that would be necessary for this kind of fore- cast. However, the key point is that the model - whether it regards insect outbreaks or other important aspects of the moun- tain birch forest system - can be expected to create forecasts with a reasonable confidence level for such a complex system even for specific localities - given the neces- sary and a priori specified quality and quantity of model input. Revealine results of a different kind is the strongest kind of model assessment. In this case the model predicts something not expected and when searched forthrough more research, is found to occur. Even if the avail- able resources for modeling work always are limited, revealing new and unexpected results that can be vaiidated against real data is will always be a modeler’s dream and ultimate goal. This level of model assessment will be illus- trated in more detail below. Exploring scaling complexity Scaling complexity is one of the potential arenas where the HIBECO model may bring in new hypotheses and reveal new re- sults, in addition to offering a tool for simulation and valida- tion against data for relation- ships that are formulated a priori. For example, consider the hypothetical local population dynamics of a virtual animal species, which shows exponential growth until it overshoots the en- vironment's carrying capacity, and then goes extinct. This example is by no way realistic enough to sim- ulate actual insect outbreaks in the mountain birch forest ecosys- tem, but it will be used below to illustrate the kind of process com- plexity that may appear in any spatially extended system. In a non-spatial, "mean field", modeling context the kind of out- break scenario described above is not viable without the inclu- sion of some kind of an immigra- tion term (forcing function). Without "rescue" from immigra- tion, a model population which goes extinct from intrinsic "boom and bust" dynamics will obvious- ly not be able to reappear and increase again after extinction. Modeled in a spatial arena with a regional extent, however, population dynamics that are unstable iocally may still show a viable regional population at coarser scales within a given spa- tial arena for the model. As illus- trated in Fig. I, this may happen even without including any simu- lated "rescue effect" (Brown and Kodric-Brown 1977) from the Fig. 1. Local population density fluctuations are simulated in a spatial grid system consisting of 12 local grid cells. Each vertical column in the grid consists of 12 cells which represent a transect of 12 local "patches" in the virtual landscape at a given point in time. The successive columns from left to right in the Figure shows the transect at successive points in time, for example years, in a series of 101 time intervals. The color codes for each grid cell represent local population densities, ranging from low and medium (blue| to high (brown) and extremely high (yellow) (the latter is only represented with one "peak" at time 14 from the left and located at cell 11 from the bottom). Thus, a single vertical column of 12 cells shows local population density variations overthis spatial transect at the chosen point in time, while a specific horizontal row consisting of 101 cells shows how the local density in this cell varies over time over 101 time intervals. The density could be for example number of individuals per spatial unit on average in a sample taken within a grid cell at a given point in time. A specific center-region of the transect is marked with pale colors. For this specific center-region of between two and three grid cells, temporal outbreaks are marked along the time axis with the vertical arrows along the top of the grid. A close inspection of this center-region shows that sometimes the outbreak appear at one end of this center-region, and sometimes at the other end, or somewhere in the middle. The complex spatio-temporal fluctuations in abundance - which appears by reading the grid columns from left to right in the Figure - are due to the specific set of model rules in this simulation: A percentage of the individuals in a "booming" patch is defined to migrate to neighboring patch- es during the following "bust” event of local extinction. ln this manner, this migra- tion process may either re-populate a previously extinct local population, or the new immigrants simply add more density to the local population at that time. SKÓGRÆKTARRITIÐ 2001 l.tbl. 147
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166
Qupperneq 167
Qupperneq 168
Qupperneq 169
Qupperneq 170
Qupperneq 171
Qupperneq 172
Qupperneq 173
Qupperneq 174
Qupperneq 175
Qupperneq 176
Qupperneq 177
Qupperneq 178
Qupperneq 179
Qupperneq 180
Qupperneq 181
Qupperneq 182
Qupperneq 183
Qupperneq 184
Qupperneq 185
Qupperneq 186
Qupperneq 187
Qupperneq 188
Qupperneq 189
Qupperneq 190
Qupperneq 191
Qupperneq 192
Qupperneq 193
Qupperneq 194
Qupperneq 195
Qupperneq 196
Qupperneq 197
Qupperneq 198
Qupperneq 199
Qupperneq 200
Qupperneq 201
Qupperneq 202
Qupperneq 203
Qupperneq 204
Qupperneq 205
Qupperneq 206
Qupperneq 207
Qupperneq 208
Qupperneq 209
Qupperneq 210
Qupperneq 211
Qupperneq 212

x

Skógræktarritið

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Skógræktarritið
https://timarit.is/publication/1996

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.