Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1966, Qupperneq 38

Jökull - 01.12.1966, Qupperneq 38
 ■pu G - [ g0K 2x + 1 / 3v„ \ / \ / 3x \ (1 + (K—1)(—--)) ^g(l + 2x(K-l))+vfK((l-2x)(K-l))j ( — j. + (l-x) (1 + x(K — 1)(1 + -iK)) 3vf " V 3p / s 1 3p /s J 1/2 (15) Critical flow ratio as predicted by thís model, both for equilibrium and for metastable flow are shown in Fig. 7, reproduced from Cruver (1963). Fig. 7. Critical Discharge (Cruver’s Method). (Reproduced from Fig. 30, Cruver 1963). COMPARATIVE RESULTS Calculations employing the more sophisticat- ed models required evaluation of the equations (8), (14) and (15). The calculations are very tedious and the interpretation to be placed upon some of the derivations involved is ob- scure. It is not profitable, therefore, at the present juncture to evaluate a large number of cases. To enable the foregoing to be appraised, however, comparative figures have been cal- culated for the Hveragerdi Well G-7 Run 8 quoted previously, and are as follows. The value given in the last row of Table II is probably reasonably correct and present evidence, therefore, suggests that Methods (i) and (v) due to James and Cruver respectively are the most promising. AN APPROXIMATE ANALYSIS OF THE FLOW REGIME AT THE WELL EXIT It is well known that the critical exit velocity of a perfect gas from a pipe can be obtained by maximizing mass flow G = Vp subject to the constraints of isentropic expansion and conservation of energy. This simple approach is not directly applicable to the much more complicated case of a two-phase flow. No ideal physical model, which can be handled by mathe- matical means, can incorporate the complexities of this type of flow. On the other hand, it may be possible to obtain some rough quantita- tive analysis by making a number of approxima- tions which simplify the model. One such ap- proach is offered below. It is based on the above mentioned method of maximizing the rnass flow at the exit under a number of con- straints. The present approach involves 4 basic as- sumptions, (1) the slip ratio Iv remains constant du-ring the expansion of the two-phase mixture, (2) the pressure-volume relation for the expand- ing mixture can be described by a polytropic equation pvmn = C, where C is a constant and n is at most a slowly varying function of p. Moreover, (3) since there are no external heat losses, the energy equation for the mixture can be written dE = — evdp, (16) 192 JÖKULL
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.