Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1966, Qupperneq 39

Jökull - 01.12.1966, Qupperneq 39
TABLE II Method due to: Number G Remarks R. James (i) 47.4 Kg/sec Equation (1) Isbin, Moy and Cruz (ii) 18.0 (8) Homogeneous (iii) 26.5 (9) Fauske (iv) 26.5 » (14) Cruver (V) 41.9 Supersaturation Eqtn 35.8 Equilibrium (15) Flow Separation 40.0-45.0 Apparatus, (based on the measured mass flow of the liquicl fraction and bottom hole temperature data) Fig. 1 where E is the kinetic energy per unit mass of the mixture, and e the efficiency of the production of kinetic energy. Einally, (4) the two phases are in thermal equilibrium, that is, they have the same temperature which is a function of the pressure only. These assumptions require the following com- ments. The assumption of a constant slip ratio is no doubt incorrect. However, in most practi- cal cases, where the dryness fraction is not very low, the bulk of the kinetic energy is carried by the vapour phase, and this assump- tion therefore does not appear to introduce gross errors. The validity of the polytropic equation can be tested on the basis of steam- table data. It can be shown that it is a fair approximation. Alternatively, the polytropic exponent n can be evaluated analytically as shown in the Appendix. Moreover, the intro- duction of the efficiency e in the third assump- tion is made in order to emphasize the fact that in the case of two-phase mixtures, the conversion of enthalphy to kinetic energy necessarily involves irreversible losses due to frictional forces between the two phases. It is obvious that e will increase with an increasing dryness fraction and has the maximum value e = 1. Einally, although the assumption of thermal equilibrium appears rather reasonable, it must be recognized that some disequilibrium may occur at the relatively high velocities in- volved in the critical flow of steam-water mixtures. Thermal disequilibrium in an ex- panding mixture lowers the expansivity and therefore enhances the apparent polytropic exponent n. It can possibly be detected on the basis of experimental data on this figure. It is now possible to proceed in the following way. (i) Continuity of mass flow requires that xG = VgegRg (17) (1 — x)G = V(ef(l — Rg) (18) whence 1 G = X 1 —X vgeg vfef (19) Since vg»v(, vm = xvg, vg=I/eg, (19) can be re-arranged to read equation c. V*°" - J ! (l-x)K0,n ef (20) Also, G = Vgea, where ea is the density of the two-phase mixture apparent 9g (1 — x)Keg x + — öf (21) JÖKULL 193
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.