Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.01.2005, Qupperneq 101

Jökull - 01.01.2005, Qupperneq 101
Seismic characteristics of the Hekla volcano terial can provide constraints for a size estimate of a magma chamber. It is generally assumed that only a fraction of the contents of a reservoir is drained during an eruption, until the pressure-drop inside the cham- ber leads to cessation of the eruption. In a theoreti- cal study on explosive eruptions (andesitic to rhyolitic magma), Bower and Woods (1998) estimate the max- imum amount of erupted material to be ∼10% of the total contents for a shallow chamber and only ∼0.1– 1.0% for a deep chamber. The Hekla eruptions in 1970, 1980–1981, 1991 and 2000 produced lava and tephra of about 0.2 km3 (Grönvold et al. 1983; Guð- mundsson et al. 1992; Höskuldsson et al. submitted). With an assumption of 10%-drainage this suggests a magma chamber of 2–3 km3, which should be large enough to be detected by our method. The Hekla magma chamber may be a network of interconnected patches of molten material, rather than a simple voluminous structure. However, geochem- ical analysis of Hekla lavas shows that the composi- tion of products during the course of an eruption is quite uniform (Grönvold et al. 1983; Karl Grönvold 2003, pers. comm.), thus not supporting a complicated magma chamber structure. The quick onset of an eruption fed from great depth sounds problematic and rather unrealistic. Strain signals show that the dyke started propagating half an hour before the onset of the Hekla eruptions in 1991 and 2000 (Linde et al. 1993; Ágústsson et al. 2000). If the magma travels 14 km ormore during half an hour, it requires at least a velocity of 7.8 m/s for the ascending magma. Sacks and Linde (2001; Sel- wyn Sacks 2001, pers.comm.) suggest that the rapid start of a Hekla eruption is the result of degassing. The gas phase is released from the magma inside the reser- voir, and accumulates in the upper part of the reser- voir, which forces the level of the liquid magma to sink. The pressure in the magma chamber increases due to the ascent of gas bubbles until an eruption starts, first extruding the gases from the upper part of the chamber. Because the gas phase erupts first, the eruption can easily commence more rapidly than an eruption starting with a lava flow. The gas release ex- planation is in harmony with the observation that the Hekla eruptions begin with an explosive phase emit- ting gases and tephra, and subsequently calm down to lava effusion (Grönvold et al. 1983; Guðmundsson et al. 1992; Höskuldsson et al. submitted). Volcanic tremor during the two eruptions of 1991 and 2000 was very similar. It started simultaneously with the eruption and had a stable frequency-band during the first hours, although the eruptive activity and the amplitude of the tremor varied. The charac- teristic spectral band was about 0.5–1.5 Hz and the maximum peaks were around 0.7–0.9 Hz. This is at the lower end of the frequencies generally observed at active volcanoes in the world, mainly 0.1–8 Hz (Kon- stantinou and Schlindwein 2002). A number of possible sources for volcanic tremor have been proposed in the literature. Somemodels ex- plain the tremor as the result of resonant effects pro- duced by the geometry of volcanic conduits. Turbu- lent motion in the vapour-gas-magma mixture makes the volcanic pipes oscillate (e.g. Seidl et al. 1981; Fer- rick et al. 1982), and the frequency content of the tremor may vary with the length of the conduit. The characteristic low frequencies of Hekla tremor could indicate that the magma channel of Hekla is very large, i.e. the conduit would extend to a considerable depth and the magma chamber be at a deep level. Al- though the degassing-related origin of the tremor is shallow, the resulting vibration can occur in the long channel and produce the characteristic low frequen- cies. Other models suggest that volcanic tremor is produced by vibrations of tensile, fluid-filled, jerkily or suddenly opening cracks (Aki et al. 1977; Chouet 1981, 1985). In these models the excess pressure and degassing in the fluid generates the trembling. Ac- cording to Chouet (1992) volcanic tremor is the re- sponse of the tremor-generating system to sustained bubble oscillations in the fluid. Julian (1994) explains the cause of the volcanic tremor to be nonlinear exci- tation by fluid flow, analogous to the excitation mech- anism of musical wind instruments. Volcanic tremor often begins prior to the actual surface outbreak of an eruption and may extend be- yond the duration of surface activity (e.g. Chouet 1981; Montalto et al. 1995). This was not the case at Hekla, where the tremor started at the same time as the eruption and also terminated simultaneously with the JÖKULL No. 55 101
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166
Qupperneq 167
Qupperneq 168
Qupperneq 169
Qupperneq 170
Qupperneq 171
Qupperneq 172
Qupperneq 173
Qupperneq 174
Qupperneq 175
Qupperneq 176
Qupperneq 177
Qupperneq 178
Qupperneq 179
Qupperneq 180
Qupperneq 181
Qupperneq 182
Qupperneq 183
Qupperneq 184

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.