Fróðskaparrit - 01.01.1999, Page 257

Fróðskaparrit - 01.01.1999, Page 257
261 News and Progress 1998 Nýtt innan vísindi í 1998 Doctorates Awarded, 1998 / Ársins doktarar, 1998 Martin Zachariasen Martin Zachariasen, Algorithms for Plane Steiner Tree Problems, Ph.D. thesis, University of Copenhagen, 1998 (Published as technical report 98/15, Dept. of Computer Science, University of Copenhagen) Summary Topological network design is the process of planning the layout of a network subject to the constraints of topology. Applica- tions, for example, include the design of transportation and communication net- works in which the construction costs typi- cally are associated with the nodes and/or edges of the network. The Steiner tree problem is one of the fundamental, topo- logical network design problems. The problem is to interconnect a subset of the nodes such that there is a path between every pair of nodes while minimising the total cost of selected edges. Originally, the Steiner tree problem was stated as a purely geometric problem: Giv- en a set of points (terminals) in a plane, construct a tree interconnecting all termi- nals such that the total length of all line segments is minimised. In the Euclidean Steiner tree problem, the length of a line segment is the usual Euclidean (or L2) dis- tance between the endpoints of the seg- ment. Correspondingly, in the rectilinear Steiner tree problem distances are mea- Samandráttur Topologisk netplanlegging snýr seg um at fastleggja strukturin av einum neti undir givnum topologiskum treytum. Hetta verð- ur nýtt í sambandi við gerð av netum til flutning og samskifti, har kostnaðurin ofta er tengdur at knútunum ella kantunum í netinum. Eitt av teimum grundleggjandi problem- unum innan topologiska netplanlegging verður nevnt Steiner problemið. Hetta snýr seg um at binda saman eina partmongd av knútunum, soleiðis at øll knútapør hava ein veg ímillum hvørt annað; samstundis skal samlaði kostnaðurin minimerast. Uppruna- liga var Steiner problemið givið sum eitt reint geometriskt problem: Ein mongd av punktum (nevnd terminalar) í planinum skal samanbindast við einum træi, soleiðis at samlaða longin av øllum linjustykkjun- um í trænum verður minimerað. I tí euklid- iska Steinertrænum verður vanliga euklid- iska (ella L2) fráløgan nýtt til at máta longdina av linjustykkjunum, meðan tað rektlinjaða Steinertræið nýtir sonevndu rektlinjaðu (ella Lj) fráløguna. Fróðskaparrit 47. bók 1999: 261-136
Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8
Page 9
Page 10
Page 11
Page 12
Page 13
Page 14
Page 15
Page 16
Page 17
Page 18
Page 19
Page 20
Page 21
Page 22
Page 23
Page 24
Page 25
Page 26
Page 27
Page 28
Page 29
Page 30
Page 31
Page 32
Page 33
Page 34
Page 35
Page 36
Page 37
Page 38
Page 39
Page 40
Page 41
Page 42
Page 43
Page 44
Page 45
Page 46
Page 47
Page 48
Page 49
Page 50
Page 51
Page 52
Page 53
Page 54
Page 55
Page 56
Page 57
Page 58
Page 59
Page 60
Page 61
Page 62
Page 63
Page 64
Page 65
Page 66
Page 67
Page 68
Page 69
Page 70
Page 71
Page 72
Page 73
Page 74
Page 75
Page 76
Page 77
Page 78
Page 79
Page 80
Page 81
Page 82
Page 83
Page 84
Page 85
Page 86
Page 87
Page 88
Page 89
Page 90
Page 91
Page 92
Page 93
Page 94
Page 95
Page 96
Page 97
Page 98
Page 99
Page 100
Page 101
Page 102
Page 103
Page 104
Page 105
Page 106
Page 107
Page 108
Page 109
Page 110
Page 111
Page 112
Page 113
Page 114
Page 115
Page 116
Page 117
Page 118
Page 119
Page 120
Page 121
Page 122
Page 123
Page 124
Page 125
Page 126
Page 127
Page 128
Page 129
Page 130
Page 131
Page 132
Page 133
Page 134
Page 135
Page 136
Page 137
Page 138
Page 139
Page 140
Page 141
Page 142
Page 143
Page 144
Page 145
Page 146
Page 147
Page 148
Page 149
Page 150
Page 151
Page 152
Page 153
Page 154
Page 155
Page 156
Page 157
Page 158
Page 159
Page 160
Page 161
Page 162
Page 163
Page 164
Page 165
Page 166
Page 167
Page 168
Page 169
Page 170
Page 171
Page 172
Page 173
Page 174
Page 175
Page 176
Page 177
Page 178
Page 179
Page 180
Page 181
Page 182
Page 183
Page 184
Page 185
Page 186
Page 187
Page 188
Page 189
Page 190
Page 191
Page 192
Page 193
Page 194
Page 195
Page 196
Page 197
Page 198
Page 199
Page 200
Page 201
Page 202
Page 203
Page 204
Page 205
Page 206
Page 207
Page 208
Page 209
Page 210
Page 211
Page 212
Page 213
Page 214
Page 215
Page 216
Page 217
Page 218
Page 219
Page 220
Page 221
Page 222
Page 223
Page 224
Page 225
Page 226
Page 227
Page 228
Page 229
Page 230
Page 231
Page 232
Page 233
Page 234
Page 235
Page 236
Page 237
Page 238
Page 239
Page 240
Page 241
Page 242
Page 243
Page 244
Page 245
Page 246
Page 247
Page 248
Page 249
Page 250
Page 251
Page 252
Page 253
Page 254
Page 255
Page 256
Page 257
Page 258
Page 259
Page 260
Page 261
Page 262
Page 263
Page 264
Page 265
Page 266
Page 267
Page 268
Page 269
Page 270
Page 271
Page 272

x

Fróðskaparrit

Direct Links

If you want to link to this newspaper/magazine, please use these links:

Link to this newspaper/magazine: Fróðskaparrit
https://timarit.is/publication/15

Link to this issue:

Link to this page:

Link to this article:

Please do not link directly to images or PDFs on Timarit.is as such URLs may change without warning. Please use the URLs provided above for linking to the website.