Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.01.2010, Qupperneq 8

Jökull - 01.01.2010, Qupperneq 8
Geirsson et al. are shown in Figure 3. The observed station veloc- ities presented here are estimated after the time se- ries have been corrected for offsets due to earthquakes or equipment changes. Data from stations north of Vatnajökull, affected by the Upptyppingar intrusive episode (see below), are not used when estimating the velocities shown in Figures 1 and 4, nor are data span- ning the Eyjafjallajökull episode. Figure 1 shows the average station velocities from the installation of the stations until January 2010 with respect to a stable North-American plate, and Figure 4 shows the same velocities with respect to a fixed Eurasian plate. Euler rotation poles from the MORVEL model (DeMets et al., 2010) were used to transform the velocities from ITRF2005 to stable North-America and Eurasia (Fig- ures 1 and 4). RESULTS The plate boundary The plate boundary in Iceland is composed of several rift segments and transform zones connecting the rift segments (Figure 1), as a result of interaction of the Icelandic hotspot with the mid-Atlantic plate bound- ary. The Mid-Atlantic ridge is spreading at a full rate of a little less than 2 cm/yr in Iceland, accord- ing to plate motion models based on either geologi- cal and/or geodetic observations (e.g. DeMets et al., 1994; Kreemer et al., 2003; DeMets et al., 2010). Re- constructions of the plate spreading rates from mag- netic anomalies indicate constant rates since about 6.5 to 7.5 Ma (Merkouriev and DeMets, 2008). The spreading rate varies along the plate boundary (e.g. DeMets et al., 2010) and the rate is slightly higher in south Iceland than in north Iceland (Figure 1). The observed CGPS velocities generally agree reasonably well with plate motion model predictions (Figures 1 and 4) though formally many of the individual sites do not agree with the MORVEL model. This dis- crepancy is because many of the sites are located within the plate boundary deformation zone and thus are moving at intermediate rates, or the sites are af- fected by other processes such as glacial rebound or volcanic deformation. For example sites VMEY and RHOF are likely still slightly affected by the proxim- ity to the plate boundary (Figure 1), and the horizon- tal velocity of site HOFN (higher than the MORVEL prediction) is affected by the glacial rebound. Site HEID, on the other hand, should be less affected by glacial rebound and indeed its velocity agrees better with the MORVEL model (Figure 4). The most com- plete study to date of the plate boundary in Iceland is published in Árnadóttir et al. (2009), where they use the velocity field from the ISNET 1993 and 2004 na- tionwide campaigns, along with available CGPS data. Their results agree fairly well with predicted rates, ex- cept the observed spreading rate is slightly higher in the Northern Volcanic Zone. While the CGPS net- work is still too sparse in many places to constrain the over-all spreading of the plate boundary, it does pro- vide important observations, especially where there are transient changes in the site velocities and/or co- seismic offsets. The plate boundary on the Reykjanes peninsula is highly oblique, where the on-land continuation of the Reykjanes ridge connects to the Western Volcanic Zone and the South Iceland Seismic Zone (SISZ). Geodetic studies show that the plate spreading across the peninsula is accommodated by left-lateral shear (17–19 mm/yr) and a significant component of open- ing (7–9 mm/yr) below a locking depth of 6–9 km (Árnadóttir et al., 2006; Keiding et al., 2008). The South Iceland Seismic Zone is an east-west trending transform zone. The deformation in the brittle part of the crust (above 10–15 km) is taken up by many paral- lel north-south trending, right lateral strike slip faults, a fault configuration that has been called "book-shelf" faulting (Einarsson et al., 1981; Einarsson, 2008). Several sequences of magnitude 6–7 earthquakes are documented in the SISZ (Stefánsson and Halldórsson, 1988), with the latest sequence starting in the year 2000, as described below. The Eastern and Western volcanic zones have been observed to divide the plate spreading between each other (LaFemina et al., 2005; Sigmundsson et al., 1995). The CGPS stations in the CHIL subnet- work can be used to constrain the interplay of the vol- canic zones and the role of the Hreppar block (Figure 1). The CGPS stations indicate low spreading rates across the WVZ and we observe a small increase in 8 JÖKULL No. 60
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166
Qupperneq 167
Qupperneq 168
Qupperneq 169
Qupperneq 170
Qupperneq 171
Qupperneq 172
Qupperneq 173
Qupperneq 174
Qupperneq 175
Qupperneq 176
Qupperneq 177
Qupperneq 178
Qupperneq 179
Qupperneq 180
Qupperneq 181
Qupperneq 182
Qupperneq 183
Qupperneq 184
Qupperneq 185
Qupperneq 186
Qupperneq 187
Qupperneq 188
Qupperneq 189
Qupperneq 190
Qupperneq 191
Qupperneq 192
Qupperneq 193
Qupperneq 194
Qupperneq 195
Qupperneq 196
Qupperneq 197
Qupperneq 198
Qupperneq 199
Qupperneq 200
Qupperneq 201
Qupperneq 202
Qupperneq 203
Qupperneq 204
Qupperneq 205
Qupperneq 206
Qupperneq 207
Qupperneq 208
Qupperneq 209
Qupperneq 210
Qupperneq 211
Qupperneq 212
Qupperneq 213
Qupperneq 214
Qupperneq 215
Qupperneq 216
Qupperneq 217
Qupperneq 218
Qupperneq 219
Qupperneq 220
Qupperneq 221
Qupperneq 222
Qupperneq 223
Qupperneq 224

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.