Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.01.2010, Qupperneq 36

Jökull - 01.01.2010, Qupperneq 36
Brandsdóttir et al. components, in addition to a few purely normal events with similar N5–15◦E strike. A majority of the focal mechanisms and distribution of aftershocks thus indi- cate N-S aligned right lateral movement along the two major fault zones, although focal solutions along the E-W oriented epicentral zone further west may be in- dicative of strike-slip motion on both N-S and E-W oriented faults. A lower hemisphere equal area projection of the T axes (Figure 9) shows a strong horizontal NW- SE alignment (130◦–140◦), with an average of 138◦. Similarly, plots of the P axes show a NE-SW trend of steeply dipping as well as horizontal axes associ- ated with normal and strike-slip events, respectively. These directions are consistent with both strike-slip and normal earthquakes being generated by oblique movement with respect to the 103◦ spreading direc- tion from NUVEL-1A (DeMets et al., 1994). The NW-SE direction is close to being perpendicular to volcanic fissure swarms within the Reykjanes Penin- sula Rift Zone and Western Volcanic Zone (Clifton and Kattenhorn, 2006). Mapping of Holocene surface faults within the SISZ (Einarsson, this issue) shows individual N-N20E aligned fault systems to be made up of a series of NE en echelon fault strands (Figures 1 and 5) indicative of variable obliquity of the book- shelf faulting along the SISZ. DISCUSSION Aftershock occurrence frequency A histogram of earthquake occurrence in one hour bins (Figure 11) shows aftershock frequency decay, interrupted by an increase in seismicity May 31–June 1, June 2–4, 6–7 and 8–9. Although wind records from local weather stations (Ingólfsfjall and Eyrar- bakki) reveal a clear inverse correlation between the number of earthquakes recorded and wind strength the increase in seismicity in early June is also ob- served in the number of CMM located events with higher signal-to-noise ratio as well as the number of events Mlw ≥3 located by the SIL network (Figure 2 and black stars in Figure 11). The earthquake activity thus deviates from the empirical Omori’s Law, which states that aftershock activity should decay exponen- tially with time (Utsu, 1965). A fault reaches steady state over time, when slip rate has decreased to the tectonic loading rate. As the aftershock rate does not simply scale with stress rate, reloading of faults by afterslip can trigger after- shocks over various time periods, thus adding com- plexity to the rate-and-state dependent friction law and making it difficult to infer the mechanisms re- sponsible for earthquake triggering on the basis of ob- servations of stress changes (Helmstetter and Shaw, 2009). Although it is likely that the Reykjafjall event, which occurred within 3s of the Ingólfsfjall event (De- criem et al., 2010), was generated by near-field dy- namic triggering as during the June 2000 events (Ant- onioli et al., 2006), faults within the SISZ and RPRZ are subjected to both dynamic and static triggering (Árnadóttir et al., 2004). An increase in aftershock seismicity on May 31–June 1, June 2–4, 6–7 and 8–9 is thus most likely caused by short-term static stress buildup on adjacent faults due to abrupt changes in upper crustal pore pressure. A relatively fast visco- elastic response of the lower crust may also play a role. Pore-pressure oscillations can affect two-phase flow within geothermal areas. Some of the triggered seismicity originated within geothermal areas north of Hveragerði (Grensdalur) and at the junction of the SISZ with the southern Hengill Rift Zone. A clear cyclicity in the number of aftershocks with a 24 hour periodicity is obvious in the CMM located events. No tidal forcing effect is observed. In order to establish the exact period of the cycle a Fourier Trans- form of the histogram was produced showing a peak of 1.001 days which means that the cycle of increase and decrease in aftershock frequency is, to within a minute or so, precisely one day. The wind records show the wind force being generally lower during the night hours. The permanent stations used by SIL are buried in vaults and thus not as sensitive to wind and cultural noise as the surface installed temporary sta- tions which were also located adjacent to some of the major roads in the region (Figure 5). The 24 hour cy- cle, with about ten times fewer events detected during the daytime, is most likely due to higher cultural back- ground noise during the day, causing fewer events to be detected by the CMM program’s threshold SNR value. 36 JÖKULL No. 60
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166
Qupperneq 167
Qupperneq 168
Qupperneq 169
Qupperneq 170
Qupperneq 171
Qupperneq 172
Qupperneq 173
Qupperneq 174
Qupperneq 175
Qupperneq 176
Qupperneq 177
Qupperneq 178
Qupperneq 179
Qupperneq 180
Qupperneq 181
Qupperneq 182
Qupperneq 183
Qupperneq 184
Qupperneq 185
Qupperneq 186
Qupperneq 187
Qupperneq 188
Qupperneq 189
Qupperneq 190
Qupperneq 191
Qupperneq 192
Qupperneq 193
Qupperneq 194
Qupperneq 195
Qupperneq 196
Qupperneq 197
Qupperneq 198
Qupperneq 199
Qupperneq 200
Qupperneq 201
Qupperneq 202
Qupperneq 203
Qupperneq 204
Qupperneq 205
Qupperneq 206
Qupperneq 207
Qupperneq 208
Qupperneq 209
Qupperneq 210
Qupperneq 211
Qupperneq 212
Qupperneq 213
Qupperneq 214
Qupperneq 215
Qupperneq 216
Qupperneq 217
Qupperneq 218
Qupperneq 219
Qupperneq 220
Qupperneq 221
Qupperneq 222
Qupperneq 223
Qupperneq 224

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.