Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.01.2010, Qupperneq 38

Jökull - 01.01.2010, Qupperneq 38
Brandsdóttir et al. Conjugate faulting is most pronounced northeast and southwest of the western fault (Figures 5 and 7), similar to conjugate faulting at the southern tip of the western SISZ2000 faults (Clifton and Einarsson, 2005; Hjaltadóttir and Vogfjörð, 2005). The north- ern, shallower ends of both 2000 faults ruptured a series of NNE-trending conjugate segments whereas similar SW striking forks are only observed along the southern, deeper, end of the western (Reykjafjall) fault (Figures 10 and 12–16). Scattered activity west and northwest of the northern end of the western fault may be related to short N-S or NW-SE striking fault strands. In spite of the two Ölfus events being of a smaller magnitude than the SISZ2000 main events, the aftershock zone of the 2008 events was of similar length and depth as the June 2000 faults. In particu- lar, the 16.5 km long 2000 Hestvatn fault (Hjaltadóttir and Vogfjörð, 2005) is strikingly similar to the ∼17 km Reykjafjall fault, being divided into two sections, deepening southwards. Frictional failure on critically stressed faults has been observed under the Coulomb failure criteria in geothermal and volcanic areas following large earth- quakes (i.e. Peng et al., 2010). The overall distribu- tion of aftershocks along the main faults as well as triggered activity across the EW zone, coincides with the regions of highest Coulomb failure stress changes for two paired N-S right-lateral strike-slip faults (De- criem et al., 2010). Aftershock activity following the Mw 6.5 June 2000 events also preferentially occurred in the dilatational (northeast and southwest) quadrants with postseismic deformation which extended about 5 km from the two main shock ruptures over a period of two months (Árnadóttir et al., 2005). Whereas the short-term deformation has been explained by poro- elastic rebound due to postearthquake pore pressure changes (Jónsson et al., 2003) a year-scale deforma- tion is explained by afterslip at 8–14 km depth or lower crustal viscoelastic relaxation (Árnadóttir et al., 2005). Kinematic modelling based on geodetic mea- surements further suggest that the SISZ is a complex zone of N-S surface faulting driven by an E-W left- lateral shear below 15–20 km depth with a deep slip rate of 19 mm/yr (Árnadóttir et al., 2006). The over- all distribution of the 2008 aftershock zone and fault plane solutions are consistent with both strike-slip and normal earthquakes being generated by oblique movement with respect to the 103◦ spreading direc- tion from NUVEL-1A concurrent with volcanic fis- sure swarms within the RPRZ and WVZ. Further- more, triggered events west of the main faults, may indicate reloading by afterslip making it difficult to infer the mechanisms responsible for the earthquake triggering on the basis of short-term stress changes. CONCLUSIONS Using a new automated CMM technique a total of 19450 events, recorded on a 14-station network were located during the period May 30–July 2. Filtering based on SN ratios and location errors resulted in 7846 usable event locations. Earthquake aftershocks delineate two major 12– 17 km long, right lateral, strike slip faults, which rup- ture to greater depth (9 km) in the south than in the north (1–6 km). Most of the located events lie along the two main N-S faults, but the aftershock distribu- tion reveals several smaller parallel faults as well as conjugate NE-SW and ENE-WSW oriented faults. A comparison of CMM and SIL locations revealed a systematic westward shift of shallower events which we attribute to variation in station distribution and possible 3D variations in upper crustal structure. The aftershock distribution along the two faults is indicative of the main fault movement having been in the centre of the fault, in agreement with the GPS modeling of Hreinsdóttir et al. (2009) and Decriem et al. (2010). An increase in aftershock seismicity on May 31– June 1, June 2–4, 6–7 and 8–9 is most likely caused by short-term static stress buildup on adjacent faults. Short-term viscoelastic response of the lower crust may also be a contributing factor. A third region of aftershocks marks a more com- plex area of activity to the west of the main faults. Some event distributions and fault plane solutions align to suggest slip on smaller NS faults in this re- gion. However, left lateral strike slip features cannot be excluded in this zone, although probably with very limited slip. 38 JÖKULL No. 60
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166
Qupperneq 167
Qupperneq 168
Qupperneq 169
Qupperneq 170
Qupperneq 171
Qupperneq 172
Qupperneq 173
Qupperneq 174
Qupperneq 175
Qupperneq 176
Qupperneq 177
Qupperneq 178
Qupperneq 179
Qupperneq 180
Qupperneq 181
Qupperneq 182
Qupperneq 183
Qupperneq 184
Qupperneq 185
Qupperneq 186
Qupperneq 187
Qupperneq 188
Qupperneq 189
Qupperneq 190
Qupperneq 191
Qupperneq 192
Qupperneq 193
Qupperneq 194
Qupperneq 195
Qupperneq 196
Qupperneq 197
Qupperneq 198
Qupperneq 199
Qupperneq 200
Qupperneq 201
Qupperneq 202
Qupperneq 203
Qupperneq 204
Qupperneq 205
Qupperneq 206
Qupperneq 207
Qupperneq 208
Qupperneq 209
Qupperneq 210
Qupperneq 211
Qupperneq 212
Qupperneq 213
Qupperneq 214
Qupperneq 215
Qupperneq 216
Qupperneq 217
Qupperneq 218
Qupperneq 219
Qupperneq 220
Qupperneq 221
Qupperneq 222
Qupperneq 223
Qupperneq 224

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.