Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.01.2010, Qupperneq 51

Jökull - 01.01.2010, Qupperneq 51
Upptyppingar seismic swarms brittle-ductile boundary of 15–18 km, along a pre- sumed dyke that dipped at 50◦. Deep seismic activity attributed to melt movement is also observed beneath active volcanic centres in Ice- land, as well as elsewhere in the world such as Mt. Ki- lauea (Wright and Klein, 2006) and Japan (Hasegawa et al., 1991), but the hypocentres typically assume conduit-like as opposed to planar distributions. Near Mt. Upptyppingar, hundreds of lower crustal earthquakes have been observed beneath Askja vol- cano since the ASN began monitoring the area in 2005 (Soosalu et al., 2010). The seismicity outlines three separate vertical conduit structures that extend from c. 10 km down to the crust-mantle boundary. The most recent eruption at Askja volcano occurred in 1961. Mt. Eyjafjallajökull in southwest Iceland also ex- hibited deep seismicity in the mid-1990s that ex- tended from the crust-mantle boundary through to the surface (Hjaltadóttir et al., 2009). Seismic activ- ity persisted at shallower depths with sporadic deep events for over a decade, eventually leading to an eruption in 2010 that halted European air traffic for several days (Sigmundsson et al., 2010; Hjaltadóttir et al., 2009; Pedersen and Sigmundsson, 2004, 2006). GPS and InSAR modelling of surface deformation at Mt. Upptyppingar in 2007–2008 constrain the vol- ume of injected melt to be ∼0.040–0.047 km3, corre- sponding to the inflation of a ∼0.1–1 m thick, south- ward dipping dyke at depths of 10–18 km (Hooper et al., 2009). For comparison, the inferred volume of the pre-eruptive melt intrusion beneath Eyjafjalla- jökull was of the same magnitude (Sigmundsson et al., 2010). Seismicity that clearly defines a planar structure, as observed beneath Mt. Upptyppingar, presents an ideal opportunity to evaluate the effects of different processing techniques, network size and geometries, and phase picking accuracy by comparing hypocen- tral location precision. This form of analysis has been applied successfully in previous studies that, for ex- ample, demonstrate the benefits of relative relocation techniques (Waldhauser and Ellsworth, 2000; Slunga et al., 1995). The precision of seismic hypocentre locations af- fects how the seismicity is interpreted. Outstanding questions in crustal formation, such as the extent of host rock deformation caused by an active dyke in- trusion in visco-elastic crust, require extremely high hypocentral precision. ASN PROCESSING TECHNIQUES Data selection is primarily limited by the deploy- ment dates of the ASN (i.e., 6 July–22 August 2007). Within this date range, we further restrict our study period to 6–24 July, during which the most inten- sive and dynamic bursts of seismic activity occurred, including several earthquakes that exceeded Ml 2.0 and seismic propagation rates that reached as high as 0.05 m s−1. Moreover, signal to noise ratios were higher on average during this period than in late July and August. The study period comprises 547 events that are drawn from a SIL catalogue of over 9000 earthquakes observed beneath Mt. Upptypping- ar during 2007–2008. We then manually filtered the 547 events based on signal-to-noise ratio by inspect- ing waveforms for clarity of phase onsets. The final dataset consists of 288 high-quality events. Processing of seismic data from the ASN is per- formed in multiple steps. Firstly, events are lo- cated using the Coalescence Microseismic Mapping (CMM) software developed by Drew (2010). The SIL event catalogue is provided as input to CMM, which searches the continuously recorded data for phase on- sets near each catalogue event time through a Short Term Average to Long Term Average ratio (STA/LTA) (Drew et al., 2005). For a given search volume of dis- crete grid spacing and a specified velocity model, a look-up table is produced by forward-modelling travel times from each grid node to each receiver. The look-up table is then used to migrate seismic energy from both P-wave (vertical component) and S-wave (horizontal components) onsets at each station into the subsurface. Finally, a coalescence function is used to determine the subsurface location at which the seismic energy is focussed, yielding spatial and temporal information about the imaged seismic event. Any mis-identified onsets (e.g., from noise bursts) are smeared out over the migrated volume and thus do not contribute to the final CMM locations. Here we have used a grid spacing of 300 m; however, by virtue of JÖKULL No. 60 51
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166
Qupperneq 167
Qupperneq 168
Qupperneq 169
Qupperneq 170
Qupperneq 171
Qupperneq 172
Qupperneq 173
Qupperneq 174
Qupperneq 175
Qupperneq 176
Qupperneq 177
Qupperneq 178
Qupperneq 179
Qupperneq 180
Qupperneq 181
Qupperneq 182
Qupperneq 183
Qupperneq 184
Qupperneq 185
Qupperneq 186
Qupperneq 187
Qupperneq 188
Qupperneq 189
Qupperneq 190
Qupperneq 191
Qupperneq 192
Qupperneq 193
Qupperneq 194
Qupperneq 195
Qupperneq 196
Qupperneq 197
Qupperneq 198
Qupperneq 199
Qupperneq 200
Qupperneq 201
Qupperneq 202
Qupperneq 203
Qupperneq 204
Qupperneq 205
Qupperneq 206
Qupperneq 207
Qupperneq 208
Qupperneq 209
Qupperneq 210
Qupperneq 211
Qupperneq 212
Qupperneq 213
Qupperneq 214
Qupperneq 215
Qupperneq 216
Qupperneq 217
Qupperneq 218
Qupperneq 219
Qupperneq 220
Qupperneq 221
Qupperneq 222
Qupperneq 223
Qupperneq 224

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.