Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.01.2010, Qupperneq 79

Jökull - 01.01.2010, Qupperneq 79
Intraplate earthquake swarms in Central Europe then variations of the P and T axes of the resultant source mechanisms relative to orientation of the axes of the maximum (σ1) and minimum (σ3) local tec- tonic stress (Figure 8a) reflect various orientations of the fault planes with respect to the σ1 and σ3. We infer that in case of a favourably oriented fault plane, pres- surized fluids reduce normal stress σn and thus bring the fault to a critical state. The running swarm activ- ity is then mainly governed by the co-seismic stress changes, which could be the case of the 2000 swarm and of the first phase of the 1997 swarm. Provided a less favourably oriented fault plane, additional ten- sile force is needed to bring the fault to rupture, as it happened probably in the second phase of the 1997 swarm. Scaling relations It is generally assumed that the magnitude-frequency distribution is the primary attribute differentiating the earthquake swarms from ordinary mainshock- aftershock sequences. A causality of the main shock and aftershocks is reflected by the b-value of the Gut- enberg-Richter law ≤1. As opposed to mainshock- aftershock sequences, several larger earthquakes have similar magnitudes in swarms, and the smaller events are not associated with any identifiable mainshock; the consequence is a high b-value of the Gutenberg- Richter law, which typically exceeds 1 and reaches up to 2.5 (e.g., Lay and Wallace, 1995). For ex- ample, the ML≤2.1 swarm-like episode beneath Ey- jafjallajökull in South Iceland in 1996 was charac- terized by a b-value∼2.5, a bit lower b-value∼2.1 was found for the ML≤2.2 microearthquake swarm at Upptyppingar in North-East Iceland (Jakobsdóttir et al., 2008). But this is not true in case of the West Bohemia/Vogtland swarms. The magnitude- frequency distributions of the swarms of 1997, 2000 and 2008 show b-values∼1.0, practically the same b- values were reported by Neunhöfer and Hemmann (2005) for the 1908, 1962, 1985/1986 swarms. But the b-value is not steady during individual swarms as shown by Hainzl and Fischer (2002) who reported the b-value variations of 0.8<b<1.4 in the swarm of 2000. Nevertheless, we can conclude that the West Bohemia/Vogtland earthquake swarms are char- acterized by b-values around 1.0 which are typical for mainshock-aftershock sequences at tectonic-plate boundaries. Local or moment magnitudes ML and Mw, and seismic moment M0 are basic measures of size of the earthquake source. It is generally assumed that ML∼=Mw, and Mw∝2/3logM0 in the whole extent of ML estimated. However, a relation between ML and M0 of small earthquakes and micro-earthquakes still remains an open question (e.g., Braunmiller et al., 2005; Deichmann, 2006). To clarify this issue we evaluated the relation between M0 and the WEBNET magnitude ML. We benefited from the knowledge of the scalar moments M0, which were estimated for 70 events of the 1997 swarm and for 100 events of the 2000 swarm. Using the linear regression we obtained the relation; log10M0=1.0ML+11.3 (1) for the 0.3≤ML≤2.9 events of the 1997 swarm and for the 1.6≤ML≤3.3 events of the 2000 swarm, where M0 is measured in N-m (Figure 9b). However, the definition of the moment magnitude Mw given by Kanamori (1977); log10M0=1.5 Mw + 9.1 (2) shows fairly different scaling between moment and magnitude. If we combine the equations (1) and (2) we get ML=1.5Mw–2.3. This points to the inconsis- tency of the ML and Mw scales and underestimation of ML as discussed by Deichmann (2006). Besides, different scaling of the ML and Mw magnitudes af- fects also the b-value of the magnitude-frequency dis- tribution log10N = a − bM . We can write a rela- tion bL = bW /1.5 where bL and bW stand for the b- value determined from the local magnitude ML and moment magnitude Mw, respectively. If we used a moment magnitude Mw for statistical analysis of the West Bohemia/Vogtland earthquake swarms we would obtain the b-value of ∼1.5. The relation of log10M0∝ML, where ML is local magnitude esti- mated by the SIL network (e.g., Jakobsdóttir, 2008), was also found for the micro-earthquakes in South Iceland (R. Slunga, pers. comm.). This underlines a significance of discussing the discrepancy between the local and moment magnitudes which should be a subject of further study. JÖKULL No. 60 79
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166
Qupperneq 167
Qupperneq 168
Qupperneq 169
Qupperneq 170
Qupperneq 171
Qupperneq 172
Qupperneq 173
Qupperneq 174
Qupperneq 175
Qupperneq 176
Qupperneq 177
Qupperneq 178
Qupperneq 179
Qupperneq 180
Qupperneq 181
Qupperneq 182
Qupperneq 183
Qupperneq 184
Qupperneq 185
Qupperneq 186
Qupperneq 187
Qupperneq 188
Qupperneq 189
Qupperneq 190
Qupperneq 191
Qupperneq 192
Qupperneq 193
Qupperneq 194
Qupperneq 195
Qupperneq 196
Qupperneq 197
Qupperneq 198
Qupperneq 199
Qupperneq 200
Qupperneq 201
Qupperneq 202
Qupperneq 203
Qupperneq 204
Qupperneq 205
Qupperneq 206
Qupperneq 207
Qupperneq 208
Qupperneq 209
Qupperneq 210
Qupperneq 211
Qupperneq 212
Qupperneq 213
Qupperneq 214
Qupperneq 215
Qupperneq 216
Qupperneq 217
Qupperneq 218
Qupperneq 219
Qupperneq 220
Qupperneq 221
Qupperneq 222
Qupperneq 223
Qupperneq 224

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.